Compare commits

..

19 Commits

Author SHA1 Message Date
3efdd3c56d tut3: Fix solution order 2025-12-15 09:53:33 +01:00
63a9417bbd Fix directory naming 2025-12-15 09:51:25 +01:00
fd56183eb4 tut4: Add pause before figure 2025-12-15 09:39:46 +01:00
438a63e35e tut4: Add solutions for exercise 2 2025-12-11 17:49:26 +01:00
e516317a4e tut4: Add solutions for exercise 1 2025-12-11 16:22:26 +01:00
ac55672669 tut4: Add exercises 2025-12-11 13:38:59 +01:00
3aa02c9f36 Add tut4 frame 2025-12-11 13:20:57 +01:00
aa9dab9491 Fix errors found by students 2025-12-11 13:11:29 +01:00
b06b64739f Fix examples 2025-11-14 11:55:38 +01:00
47775e9941 tut3: Add formula for CDFs 2025-11-04 14:38:16 +01:00
0e5a22f062 tut3: Fix enum item numbering 2025-11-03 17:28:14 +01:00
3381d91dd7 tut3: Add solutions for exercise 2 2025-11-03 17:23:16 +01:00
611c728f9e tut3: Add theory for exercise 2 2025-11-03 16:32:46 +01:00
20056bac47 tut3: Add theory 1 summary 2025-11-03 13:34:47 +01:00
1d60d4fb5c tut3: Add examples of distributions 2025-11-03 13:25:38 +01:00
15504fb03b tut3: Add most of the theory for exercise 1 2025-11-02 16:58:30 +01:00
a52f08621a tut3: put numbers in math mode 2025-11-02 14:08:06 +01:00
f7d6e1a2fe tut3: fix decimal comma spacing 2025-11-02 14:02:58 +01:00
8a6907e5c7 tut3: Fix date 2025-11-02 13:55:50 +01:00
3 changed files with 1074 additions and 359 deletions

View File

@ -137,7 +137,7 @@
\begin{align*}
\Omega &= \mleft\{(i,j): i,j \in \mleft\{
1,\ldots, 6 \mright\}\mright\} \\
A &= \mleft\{ (1,1),(2,2), \ldots, (6,6) \mright\}
A &= \mleft\{ (1,1),(1,2), \ldots, (6,6) \mright\}
\end{align*}
\vspace*{-12mm}
\end{lightgrayhighlightbox}
@ -372,7 +372,7 @@
\begin{lightgrayhighlightbox}
Beispiel:
\begin{gather*}
\Omega = {A, B, C}\\
\Omega = \{A, B, C\}\\
\Pi_N = \{ (A,B,C), (A,C,B), (B,A,C),\\
(B,C,A), (C,A,B), (C,B,A)\}
\end{gather*}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,425 @@
\ifdefined\ishandout
\documentclass[de, handout]{CELbeamer}
\else
\documentclass[de]{CELbeamer}
\fi
%
%
% CEL Template
%
%
\newcommand{\templates}{preambles}
\input{\templates/packages.tex}
\input{\templates/macros.tex}
\grouplogo{CEL_logo.pdf}
\groupname{Communication Engineering Lab (CEL)}
\groupnamewidth{80mm}
\fundinglogos{}
%
%
% Custom commands
%
%
\input{lib/latex-common/common.tex}
\pgfplotsset{colorscheme/rocket}
\newcommand{\res}{src/2025-12-19/res}
% \tikzstyle{every node}=[font=\small]
% \captionsetup[sub]{font=small}
%
%
% Document setup
%
%
\usepackage{tikz}
\usepackage{tikz-3dplot}
\usetikzlibrary{spy, external, intersections, positioning}
%\tikzexternalize[prefix=build/]
\usepackage{pgfplots}
\pgfplotsset{compat=newest}
\usepgfplotslibrary{fillbetween}
\usepackage{enumerate}
\usepackage{listings}
\usepackage{subcaption}
\usepackage{bbm}
\usepackage{multirow}
\usepackage{xcolor}
\title{WT Tutorium 4}
\author[Tsouchlos]{Andreas Tsouchlos}
\date[]{19. Dezember 2025}
%
%
% Document body
%
%
\begin{document}
\begin{frame}[title white vertical, picture=images/IMG_7801-cut]
\titlepage
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Aufgabe 1}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Theorie Wiederholung}
\begin{frame}
\frametitle{sasdf}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Aufgabe}
\begin{frame}
\frametitle{Aufgabe 1: Stetige Verteilungen}
Die Zufallsvariable X besitze die Dichte
% tex-fmt: off
\begin{align*}
f_X (x) = \left\{
\begin{array}{ll}
C \cdot x e^{-ax^2}, & x \ge 0 \\
0, &\text{sonst}
\end{array}
\right.
\end{align*}
% tex-fmt: on
mit dem Parameter $a > 0$.
% tex-fmt: off
\begin{enumerate}[a{)}]
\item Bestimmen Sie den Koeffizienten $C$, sodass $f_X(x)$ eine
Wahrscheinlichkeitsdichte ist. Welche Eigenschaften muss eine
\textbf{Wahrscheinlichkeitsdichte} erfüllen? Skizzieren Sie
$f_X (x)$ für $a = 0{,}5$.
\item Welche Eigenschaften muss eine \textbf{Verteilungsfunktion}
erfüllen?
\item Berechnen und skizzieren Sie die Verteilungsfunktion $F_X (x)$.
\item Welche Wahrscheinlichkeit hat das Ereignis
$\{\omega : 1 < X(\omega) \le 2\}$?
\end{enumerate}
% tex-fmt: on
\end{frame}
\begin{frame}
\frametitle{Aufgabe 1: Stetige Verteilungen}
\vspace*{-15mm}
Die Zufallsvariable X besitze die Dichte
% tex-fmt: off
\begin{align*}
f_X (x) = \left\{
\begin{array}{ll}
C \cdot x e^{-ax^2}, & x \ge 0 \\
0, &\text{sonst}
\end{array}
\right.
\end{align*}
% tex-fmt: on
mit dem Parameter $a > 0$.
% tex-fmt: off
\begin{enumerate}[a{)}]
\item Bestimmen Sie den Koeffizienten $C$, sodass $f_X(x)$ eine
Wahrscheinlichkeitsdichte ist. Welche Eigenschaften muss eine
\textbf{Wahrscheinlichkeitsdichte} erfüllen? Skizzieren Sie
$f_X (x)$ für $a = 0{,}5$.
\pause\begin{columns}
\column{\kitthreecolumns}
\begin{align*}
\text{Eigenschaften:} \hspace{5mm}
\left\{
\begin{array}{rl}
f_X(x) &\ge 0 \\[3mm]
\displaystyle\int_{-\infty}^{\infty} f_X(x) dx &= 1
\end{array}
\right.
\end{align*}
\pause\begin{gather*}
\int_{-\infty}^{\infty} f_X(x) dx
= \int_{-\infty}^{\infty} C\cdot x e^{-ax^2} dx
= \frac{C}{-2a} \int_{-\infty}^{\infty} (-2ax) e^{-ax^2} dx \\
= \frac{C}{-2a} \int_{-\infty}^{\infty} (e^{-ax^2})' dx
= \frac{C}{-2a} \mleft[ e^{-ax^2} \mright]_0^{\infty} \overset{!}{=} 1 \hspace{10mm} \Rightarrow C = 2a
\end{gather*}
\centering
\column{\kitthreecolumns}
\pause \begin{align*}
f_X(x) =
\left\{
\begin{array}{ll}
2ax \cdot e^{-ax^2}, & x\ge 0\\
0, & \text{sonst}
\end{array}
\right.
\end{align*}
\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{axis}[
domain=0:5,
width=12cm,
height=5cm,
samples=100,
xlabel={$x$},
ylabel={$f_X(x)$},
]
\addplot+[mark=none, line width=1pt]
{x * exp(-0.5*x*x)};
% {x *exp(-a*x*x)};
\end{axis}
\end{tikzpicture}
\end{figure}
\end{columns}
\end{enumerate}
% tex-fmt: on
\end{frame}
\begin{frame}
\frametitle{Aufgabe 1: Stetige Verteilungen}
\vspace*{-20mm}
% tex-fmt: off
\begin{enumerate}[a{)}]
\setcounter{enumi}{1}
\item Welche Eigenschaften muss eine \textbf{Verteilungsfunktion}
erfüllen?
\pause\vspace{-10mm}\begin{columns}[t]
\column{\kitonecolumn}
\column{\kittwocolumns}
\centering
\begin{gather*}
\lim_{x\rightarrow -\infty} F_X(x) = 0\\
\lim_{x\rightarrow +\infty} F_X(x) = 1
\end{gather*}
\column{\kittwocolumns}
\centering
\begin{gather*}
x_1 \le x_2 \Rightarrow F_X(x_1) \le F_X(x_2) \\
F_X(x+) = \lim_{h\rightarrow 0^+} F_X (x+h) = F_X(x)
\hspace{5mm}\forall x\in \mathbb{R}
\end{gather*}
\column{\kitonecolumn}
\end{columns}
\pause\item Berechnen und skizzieren Sie die Verteilungsfunktion $F_X (x)$.
\begin{gather*}
f_X(x) = 2ax\cdot e^{-ax^2}, \hspace{5mm} x\ge 0
\end{gather*}
\pause \vspace*{-6mm}\begin{gather*}
F_X(x) = \int_{-\infty}^{x} f_X(u) du
= \left\{ \begin{array}{ll}
\displaystyle\int_{0}^{x} 2au\cdot e^{-au^2} du, & x\ge 0 \\
0, & x < 0
\end{array} \right.
\hspace{5mm} = \left\{ \begin{array}{ll}
\mleft[ -e^{-au^2} \mright]_0^{x}, & x\ge 0 \\
0, & x < 0
\end{array} \right.
\hspace{5mm} = \left\{ \begin{array}{ll}
1 - e^{-ax^2}, & x\ge 0\\
0, & x < 0
\end{array} \right.
\end{gather*}
\pause\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{axis}[
domain=0:5,
width=14cm,
height=5cm,
xlabel={$x$},
ylabel={$F_X(x)$},
]
\addplot+[mark=none, line width=1pt]
{1 - exp(-0.5 * x*x)};
\end{axis}
\end{tikzpicture}
\end{figure}
\vspace*{-3mm}
\pause\item Welche Wahrscheinlichkeit hat das Ereignis
$\{\omega : 1 < X(\omega) \le 2\}$?
\pause \begin{gather*}
P(\mleft\{ \omega: 1 < X(\omega) \le 2 \mright\})
= P(1 < X \le 2) = F_X(2) - F_X(1) = e^{-a} - e^{-4a}
\end{gather*}
\end{enumerate}
% tex-fmt: off
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Aufgabe 2}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Theorie Wiederholung}
\begin{frame}
\frametitle{sasdf}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Aufgabe}
\begin{frame}
\frametitle{Aufgabe 2: Normalverteilung}
In einem Produktionsprozess werden Ladegeräte für Mobiltelefone
hergestellt. Bevor die Ladegeräte mit den Mobiltelefonen zusammen
verpackt werden, wird die Ladespannung von jedem Ladegerät einmal
gemessen. Die Messwerte der Ladespannungen der verschiedenen
Ladegeräte genüge näherungsweise einer normalverteilten
Zufallsvariablen mit $\mu = 5$ Volt und $\sigma = 0,07$ Volt. Alle
Ladegeräte, bei denen die Messung um mehr als $4$ \% vom Sollwert
$S = 5$ Volt abweicht, sollen aussortiert werden.
% tex-fmt: off
\begin{enumerate}[a{)}]
\item Wie viel Prozent der Ladegeräte werden aussortiert?
\item Der Hersteller möchte seinen Produktionsprozess so verbessern,
dass nur noch halb so viele Ladegeräte wie in a) aussortiert
werden. Auf welchen Wert müsste er dazu $\sigma$ senken?
\item Durch einen Produktionsfehler verschiebt sich der Mittelwert
$\mu$ auf $5{,}1$ Volt ($\sigma$ ist $0{,}07$ Volt). Wie groß ist
jetzt der Prozentsatz, der aussortiert wird?
\end{enumerate}
% tex-fmt: on
\end{frame}
\begin{frame}
\frametitle{Aufgabe 2: Normalverteilung}
\vspace*{-10mm}
In einem Produktionsprozess werden Ladegeräte für Mobiltelefone
hergestellt. Bevor die Ladegeräte mit den Mobiltelefonen zusammen
verpackt werden, wird die Ladespannung von jedem Ladegerät einmal
gemessen. Die Messwerte der Ladespannungen der verschiedenen
Ladegeräte genüge näherungsweise einer normalverteilten
Zufallsvariablen mit $\mu = 5$ Volt und $\sigma = 0,07$ Volt. Alle
Ladegeräte, bei denen die Messung um mehr als $4$ \% vom Sollwert
$S = 5$ Volt abweicht, sollen aussortiert werden.
% tex-fmt: off
\begin{enumerate}[a{)}]
\item Wie viel Prozent der Ladegeräte werden aussortiert?
\begin{columns}[c]
\column{\kitthreecolumns}
\centering
\pause \begin{gather*}
X \sim \mathcal{N} \mleft( \mu = 0{,}5, \sigma = 0{,}07^2 \mright)
\end{gather*}
\begin{align*}
P(E_\text{a}) &= P \Big( \big( X < S(1-\delta) \big)
\cup \big( X > S(1 + \delta) \big) \Big) \\
&= P(X < S(1 - \delta)) + P(X > S(1 + \delta)) \\[2mm]
&= P\left(Z < \frac{S(1 - \delta) - \mu}{\sigma}\right)
+ P\left(Z > \frac{S(1 + \delta) - \mu}{\sigma}\right) \\[2mm]
&\approx \Phi(-2.86) + \left(1 - \Phi(2.86)\right) \\
&= 2 - 2\Phi(2.86) \approx 0{,}424\text{\%}
\end{align*}
\column{\kitthreecolumns}
\centering
\pause\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{axis}[
domain=4.6:5.3,
xmin=4.7, xmax=5.3,
width=14cm,
height=6cm,
xlabel={$x$},
ylabel={$F_X (x)$},
samples=100,
xtick = {4.6,4.7,4.8,...,5.4}
]
\addplot+[mark=none, line width=1pt]
{1 / sqrt(2*3.1415*0.07*0.07) * exp(-(x - 5)*(x-5)/(2*0.07*0.07))};
\addplot +[scol2, mark=none, line width=1pt] coordinates {(4.8, -1) (4.8, 2)};
\addplot +[scol2, mark=none, line width=1pt] coordinates {(5.2, -1) (5.2, 2)};
\node at (axis cs: 4.8, 3) {$S(1-\delta)$};
\node at (axis cs: 5.2, 3) {$S(1+\delta)$};
\end{axis}
\end{tikzpicture}
\end{figure}
\end{columns}
\end{enumerate}
% tex-fmt: on
\end{frame}
\begin{frame}
\frametitle{Aufgabe 2: Normalverteilung}
\vspace*{-18mm}
% tex-fmt: off
\begin{enumerate}[a{)}]
\setcounter{enumi}{1}
\item Der Hersteller möchte seinen Produktionsprozess so verbessern,
dass nur noch halb so viele Ladegeräte wie in a) aussortiert
werden. Auf welchen Wert müsste er dazu $\sigma$ senken?
\pause\begin{gather*}
P(E_\text{b}) = \frac{1}{2} P(E_\text{a}) \approx 0.212\text{\%} \\
\end{gather*}
\vspace*{-18mm}
\begin{columns}
\pause\column{\kitthreecolumns}
\centering
\begin{align*}
P(E_\text{b}) &\overset{\text{a)}}{=} P\left(Z < \frac{S(1 - \delta) - \mu}{\sigma'}\right)
+ P\left(Z > \frac{S(1 + \delta) - \mu}{\sigma'}\right) \\[2mm]
&= P\left(Z < -\frac{0{,}2}{\sigma'}\right)
+ P\left(Z > \frac{0{,}2}{\sigma'}\right) \\[2mm]
&= \Phi\left(-\frac{0{,}2}{\sigma'}\right)
+ \left(1 - \Phi\left(\frac{0{,}2}{\sigma'} \right)\right) \\[2mm]
&= 2 - 2 \Phi\left(\frac{0{,}2}{\sigma'} \right)
\end{align*}
\pause\column{\kitthreecolumns}
\centering
\begin{gather*}
2 - 2\Phi\left(\frac{0.2}{\sigma'}\right) = 2{,}12\cdot 10^{-3} \\
\Rightarrow \Phi\left(\frac{0.2}{\sigma'}\right) \approx 0.9989 \\
\Rightarrow \sigma' \approx \frac{0{,}2}{\Phi^{-1}(0{,}9989)}
\approx \frac{0{,}2}{3{,}08} \approx 0.65
\end{gather*}
\end{columns}
\pause \vspace*{-5mm}\item Durch einen Produktionsfehler verschiebt sich der
Mittelwert $\mu$ auf $5{,}1$ Volt ($\sigma$ ist $0{,}07$ Volt).
Wie groß ist jetzt der Prozentsatz, der aussortiert wird?
\pause \begin{align*}
P(E_\text{c}) &\overset{\text{a)}}{=} P\left(Z < \frac{S(1 - \delta) - \mu}{\sigma}\right)
+ P\left(Z > \frac{S(1 + \delta) - \mu}{\sigma}\right) \\[2mm]
&\approx \Phi(-4{,}29) + (1 - \Phi(1{,}43)) \\
& = 2 - \Phi(4{,}29) - \Phi(1{,}43) \approx 7.78 \text{\%}
\end{align*}
\end{enumerate}
% tex-fmt: on
\end{frame}
\end{document}