tut4: Add solutions for exercise 1
This commit is contained in:
parent
ac55672669
commit
e516317a4e
@ -118,7 +118,155 @@
|
||||
$\{\omega : 1 < X(\omega) \le 2\}$?
|
||||
\end{enumerate}
|
||||
% tex-fmt: on
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Aufgabe 1: Stetige Verteilungen}
|
||||
|
||||
\vspace*{-15mm}
|
||||
|
||||
Die Zufallsvariable X besitze die Dichte
|
||||
|
||||
% tex-fmt: off
|
||||
\begin{align*}
|
||||
f_X (x) = \left\{
|
||||
\begin{array}{ll}
|
||||
C \cdot x e^{-ax^2}, & x \ge 0 \\
|
||||
0, &\text{sonst}
|
||||
\end{array}
|
||||
\right.
|
||||
\end{align*}
|
||||
% tex-fmt: on
|
||||
|
||||
mit dem Parameter $a > 0$.
|
||||
|
||||
% tex-fmt: off
|
||||
\begin{enumerate}[a{)}]
|
||||
\item Bestimmen Sie den Koeffizienten $C$, sodass $f_X(x)$ eine
|
||||
Wahrscheinlichkeitsdichte ist. Welche Eigenschaften muss eine
|
||||
\textbf{Wahrscheinlichkeitsdichte} erfüllen? Skizzieren Sie
|
||||
$f_X (x)$ für $a = 0{,}5$.
|
||||
\pause\begin{columns}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{align*}
|
||||
\text{Eigenschaften:} \hspace{5mm}
|
||||
\left\{
|
||||
\begin{array}{rl}
|
||||
f_X(x) &\ge 0 \\[3mm]
|
||||
\displaystyle\int_{-\infty}^{\infty} f_X(x) dx &= 1
|
||||
\end{array}
|
||||
\right.
|
||||
\end{align*}
|
||||
\pause\begin{gather*}
|
||||
\int_{-\infty}^{\infty} f_X(x) dx
|
||||
= \int_{-\infty}^{\infty} C\cdot x e^{-ax^2} dx
|
||||
= \frac{C}{-2a} \int_{-\infty}^{\infty} (-2ax) e^{-ax^2} dx \\
|
||||
= \frac{C}{-2a} \int_{-\infty}^{\infty} (e^{-ax^2})' dx
|
||||
= \frac{C}{-2a} \mleft[ e^{-ax^2} \mright]_0^{\infty} \overset{!}{=} 1 \hspace{10mm} \Rightarrow C = 2a
|
||||
\end{gather*}
|
||||
\centering
|
||||
\column{\kitthreecolumns}
|
||||
\pause \begin{align*}
|
||||
f_X(x) =
|
||||
\left\{
|
||||
\begin{array}{ll}
|
||||
2ax \cdot e^{-ax^2}, & x\ge 0\\
|
||||
0, & \text{sonst}
|
||||
\end{array}
|
||||
\right.
|
||||
\end{align*}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
domain=0:5,
|
||||
width=12cm,
|
||||
height=5cm,
|
||||
samples=100,
|
||||
xlabel={$x$},
|
||||
ylabel={$f_X(x)$},
|
||||
]
|
||||
\addplot+[mark=none, line width=1pt]
|
||||
{x * exp(-0.5*x*x)};
|
||||
% {x *exp(-a*x*x)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{figure}
|
||||
\end{columns}
|
||||
\end{enumerate}
|
||||
% tex-fmt: on
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Aufgabe 1: Stetige Verteilungen}
|
||||
|
||||
\vspace*{-20mm}
|
||||
|
||||
% tex-fmt: off
|
||||
\begin{enumerate}[a{)}]
|
||||
\item Welche Eigenschaften muss eine \textbf{Verteilungsfunktion}
|
||||
erfüllen?
|
||||
\pause\vspace{-10mm}\begin{columns}[t]
|
||||
\column{\kitonecolumn}
|
||||
\column{\kittwocolumns}
|
||||
\centering
|
||||
\begin{gather*}
|
||||
\lim_{x\rightarrow -\infty} F_X(x) = 0\\
|
||||
\lim_{x\rightarrow +\infty} F_X(x) = 1
|
||||
\end{gather*}
|
||||
\column{\kittwocolumns}
|
||||
\centering
|
||||
\begin{gather*}
|
||||
x_1 \le x_2 \Rightarrow F_X(x_1) \le F_X(x_2) \\
|
||||
F_X(x+) = \lim_{h\rightarrow 0^+} F_X (x+h) = F_X(x)
|
||||
\hspace{5mm}\forall x\in \mathbb{R}
|
||||
\end{gather*}
|
||||
\column{\kitonecolumn}
|
||||
\end{columns}
|
||||
\pause\item Berechnen und skizzieren Sie die Verteilungsfunktion $F_X (x)$.
|
||||
\begin{gather*}
|
||||
f_X(x) = 2ax\cdot e^{-ax^2}, \hspace{5mm} x\ge 0
|
||||
\end{gather*}
|
||||
\pause \vspace*{-6mm}\begin{gather*}
|
||||
F_X(x) = \int_{-\infty}^{x} f_X(u) du
|
||||
= \left\{ \begin{array}{ll}
|
||||
\displaystyle\int_{0}^{x} 2au\cdot e^{-au^2} du, & x\ge 0 \\
|
||||
0, & x < 0
|
||||
\end{array} \right.
|
||||
\hspace{5mm} = \left\{ \begin{array}{ll}
|
||||
\mleft[ -e^{-au^2} \mright]_0^{x}, & x\ge 0 \\
|
||||
0, & x < 0
|
||||
\end{array} \right.
|
||||
\hspace{5mm} = \left\{ \begin{array}{ll}
|
||||
1 - e^{-ax^2}, & x\ge 0\\
|
||||
0, & x < 0
|
||||
\end{array} \right.
|
||||
\end{gather*}
|
||||
\pause\begin{figure}[H]
|
||||
\centering
|
||||
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
domain=0:5,
|
||||
width=14cm,
|
||||
height=5cm,
|
||||
xlabel={$x$},
|
||||
ylabel={$F_X(x)$},
|
||||
]
|
||||
\addplot+[mark=none, line width=1pt]
|
||||
{1 - exp(-0.5 * x*x)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{figure}
|
||||
\vspace*{-3mm}
|
||||
\pause\item Welche Wahrscheinlichkeit hat das Ereignis
|
||||
$\{\omega : 1 < X(\omega) \le 2\}$?
|
||||
\pause \begin{gather*}
|
||||
P(\mleft\{ \omega: 1 < X(\omega) \le 2 \mright\})
|
||||
= P(1 < X \le 2) = F_X(2) - F_X(1) = e^{-a} - e^{-4a}
|
||||
\end{gather*}
|
||||
\end{enumerate}
|
||||
% tex-fmt: off
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
Loading…
Reference in New Issue
Block a user