tut3: Add theory for exercise 2

This commit is contained in:
Andreas Tsouchlos 2025-11-03 16:32:46 +01:00
parent 20056bac47
commit 611c728f9e

View File

@ -206,7 +206,7 @@
\end{lightgrayhighlightbox}
\end{columns}
\pause
\item Einige Kenngrößen von Verteilungen
\item Kenngrößen von Verteilungen
\vspace*{2mm}
\begin{columns}[t]
\column{\kittwocolumns}
@ -310,7 +310,7 @@
\begin{frame}
\frametitle{Zusammenfassung}
\begin{columns}
\begin{columns}[t]
\column{\kittwocolumns}
\begin{greenblock}{Verteilungsfunktion (diskret)}
\vspace*{-6mm}
@ -557,64 +557,116 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Theorie Wiederholung}
% \begin{frame}
% \frametitle{Zusätzliche Bedingungen und Unabhängigkeit}
%
% \begin{itemize}
% \item Erweiterte Definition der bedingten Wahrscheinlichkeit
% \begin{gather*}
% P(A\vert BC) = \frac{P(AB\vert C)}{P(B\vert C)}
% \end{gather*}
% \item Satz von Bayes mit zusätzlichen Bedingungen
% \begin{gather*}
% P(A\vert BC) = \frac{P(B\vert AC) P(A\vert C)}{P(B\vert C)}
% \end{gather*}
% \pause
% \item Unabhängigkeit
% \begin{gather*}
% A,B \text{ Unabhängig} \hspace{5mm}
% \Leftrightarrow\hspace{5mm} P(AB) = P(A) P(B)
% \hspace{5mm} \Leftrightarrow \hspace{5mm} P(A\vert B) = P(A)
% \end{gather*}
% \end{itemize}
% \end{frame}
%
% \begin{frame}
% \frametitle{Zusammenfassung}
%
% \begin{columns}
% \column{\kitthreecolumns}
% \begin{greenblock}{Bedingte Wahrscheinlichkeit}
% \vspace*{-6mm}
% \begin{gather*}
% P(A\vert B) = \frac{P(AB)}{P(B)}
% \end{gather*}
% \end{greenblock}
% \column{\kitthreecolumns}
% \begin{greenblock}{Formel von Bayes}
% \vspace*{-6mm}
% \begin{gather*}
% P(A\vert B) = \frac{P(B\vert A) P(A)}{P(B)}
% \end{gather*}
% \end{greenblock}
% \end{columns}
% \begin{columns}
% \column{\kitthreecolumns}
% \begin{greenblock}{Satz der totalen Wahrscheinlichkeit}
% \vspace*{-6mm}
% \begin{gather*}
% P(B) = \sum_{n} P(B\vert A_n)P(A_n)
% \end{gather*}
% \end{greenblock}
% \column{\kitthreecolumns}
% \begin{greenblock}{Unabhängigkeit von Ereignissen}
% \vspace*{-6mm}
% \begin{gather*}
% P(AB) = P(A) P(B)
% \end{gather*}
% \end{greenblock}
% \end{columns}
% \end{frame}
\begin{frame}
\frametitle{Weitere Kenngrößen von Verteilungen}
\vspace*{-10mm}
\vspace*{10mm}
\begin{columns}[t]
\column{\kitthreecolumns}
\centering
\textbf{$k$-tes Moment}
\begin{gather*}
E(X^k) = \sum_{n=1}^{\infty} x_n^k P(X=x_n)
\end{gather*}%
\column{\kitthreecolumns}
\centering
\textbf{$k$-tes zentrales Moment}
\begin{gather*}
E\left( \left(X - E(X)\right)^k \right) =
\sum_{n=1}^{\infty} \left(x_n - E(X)\right)^k P(X=x_n)
\end{gather*}%
\end{columns}
\vspace*{20mm}
\pause
\begin{columns}[t]
\column{\kitthreecolumns}
\centering
\textbf{Charakteristische Funktion (diskret)}
\begin{gather*}
\phi_X(s) = E(e^{jsX}) = \sum_{n=1}^{\infty}
e^{jsx_n} P(X=x_n)\\[5mm]
E(X^k) = \frac{\phi_X^{(k)}(0)}{j^k}
\end{gather*}
\column{\kitthreecolumns}
\centering
\textbf{Erzeugende Funktion}
\begin{gather*}
\text{Voraussetzung:} \hspace{5mm} x \in \mathbb{N}_0\\[5mm]
\psi(z) = E(z^x) = \sum_{n=1}^{\infty} z^n P(x=n)\\[5mm]
P(X=n) = \frac{\psi_X^{(n)}(0)}{n!}
\end{gather*}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Zusammenfassung}
\vspace*{-16mm}
\begin{columns}[t]
\column{\kittwocolumns}
\begin{greenblock}{Verteilungsfunktion (diskret)}
\vspace*{-6mm}
\begin{gather*}
F_X(x) = P(X \le x) = \sum_{n:x_n < x} P_X(x_n)
\end{gather*}
\end{greenblock}
\column{\kittwocolumns}
\begin{greenblock}{Varianz}
\vspace*{-6mm}
\begin{gather*}
V(X) = E\left(\left(X - E(X)\right)^2\right)
\end{gather*}%
\vspace*{-8mm}
\begin{align*}
V(X) &= E(X^2) - \left(E(X)\right)^2\\
V(aX) &= a^2 V(x)\\
V(X+b) &= V(X)
\end{align*}
\end{greenblock}
\column{\kittwocolumns}
\begin{greenblock}{$p$-Quantil}
\vspace*{-6mm}
\begin{gather*}
x_p = \text{inf}\mleft\{ x\in \mathbb{R} : P(X
\le x) \ge p \mright\}
\end{gather*}
\vspace*{-8mm}
\begin{gather*}
p=0.5 \hspace{5mm} \rightarrow \hspace{5mm} x_p
\equiv \text{``Median''}
\end{gather*}
\end{greenblock}
\end{columns}
\begin{columns}[t]
\column{\kittwocolumns}
\begin{greenblock}{$k$-tes Moment}
\vspace*{-6mm}
\begin{gather*}
E(X^k) = \sum_{n=1}^{\infty} x_n^k P(X=x_n)
\end{gather*}%
\end{greenblock}
\column{\kittwocolumns}
\begin{greenblock}{Charakt. Funktion (diskret)}
\vspace*{-6mm}
\begin{gather*}
\phi_X(s) = \sum_{n=1}^{\infty}
e^{jsx_n} P(X=x_n)\\[5mm]
E(X^k) = \frac{\phi_X^{(k)}(0)}{j^k}
\end{gather*}
\end{greenblock}
\column{\kittwocolumns}
\begin{greenblock}{Erzeugende Funktion}
\vspace*{-6mm}
\begin{gather*}
\psi(z) = \sum_{n=1}^{\infty} z^n P(x=n)\\[5mm]
P(X=n) = \frac{\psi_X^{(n)}(0)}{n!}
\end{gather*}
\end{greenblock}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Aufgabe}