Compare commits

...

19 Commits

Author SHA1 Message Date
088d448e50 Put numbers in tables in math mode 2025-12-17 15:21:49 +01:00
b815a88361 Replace Z with X for the standart normal distribution 2025-12-17 15:16:56 +01:00
7bea062e6a Fix spacing 2025-12-17 01:09:56 +01:00
5bf78e09e1 Add theory for part 2 2025-12-17 01:03:47 +01:00
aae0aae77b Finish theory for part 1 2025-12-16 23:13:53 +01:00
c0992e9690 Continue adding stuff 2025-12-16 17:42:26 +01:00
6942d2386e Add pauses; Fix decimal point -> decimal comma 2025-12-16 17:07:34 +01:00
4e39722899 tut4: Add some formulas for theory on part 2; Add TODOs 2025-12-16 00:46:14 +01:00
f0c22852be tut4: Started adding theory for exercise 1 2025-12-16 00:18:12 +01:00
3efdd3c56d tut3: Fix solution order 2025-12-15 09:53:33 +01:00
63a9417bbd Fix directory naming 2025-12-15 09:51:25 +01:00
fd56183eb4 tut4: Add pause before figure 2025-12-15 09:39:46 +01:00
438a63e35e tut4: Add solutions for exercise 2 2025-12-11 17:49:26 +01:00
e516317a4e tut4: Add solutions for exercise 1 2025-12-11 16:22:26 +01:00
ac55672669 tut4: Add exercises 2025-12-11 13:38:59 +01:00
3aa02c9f36 Add tut4 frame 2025-12-11 13:20:57 +01:00
aa9dab9491 Fix errors found by students 2025-12-11 13:11:29 +01:00
b06b64739f Fix examples 2025-11-14 11:55:38 +01:00
47775e9941 tut3: Add formula for CDFs 2025-11-04 14:38:16 +01:00
3 changed files with 741 additions and 7 deletions

View File

@ -137,7 +137,7 @@
\begin{align*} \begin{align*}
\Omega &= \mleft\{(i,j): i,j \in \mleft\{ \Omega &= \mleft\{(i,j): i,j \in \mleft\{
1,\ldots, 6 \mright\}\mright\} \\ 1,\ldots, 6 \mright\}\mright\} \\
A &= \mleft\{ (1,1),(2,2), \ldots, (6,6) \mright\} A &= \mleft\{ (1,1),(1,2), \ldots, (6,6) \mright\}
\end{align*} \end{align*}
\vspace*{-12mm} \vspace*{-12mm}
\end{lightgrayhighlightbox} \end{lightgrayhighlightbox}
@ -372,7 +372,7 @@
\begin{lightgrayhighlightbox} \begin{lightgrayhighlightbox}
Beispiel: Beispiel:
\begin{gather*} \begin{gather*}
\Omega = {A, B, C}\\ \Omega = \{A, B, C\}\\
\Pi_N = \{ (A,B,C), (A,C,B), (B,A,C),\\ \Pi_N = \{ (A,B,C), (A,C,B), (B,A,C),\\
(B,C,A), (C,A,B), (C,B,A)\} (B,C,A), (C,A,B), (C,B,A)\}
\end{gather*} \end{gather*}

View File

@ -156,6 +156,9 @@
\overbrace{P_X(x)}^\text{Verteilung}\\ \overbrace{P_X(x)}^\text{Verteilung}\\
&= \sum_{n:x_n \le x} P(X=x) &= \sum_{n:x_n \le x} P(X=x)
\end{align*} \end{align*}
\begin{gather*}
P(a < X \le b) = F_X(b) - F_X(a)
\end{gather*}
\column{\kitthreecolumns} \column{\kitthreecolumns}
\begin{lightgrayhighlightbox} \begin{lightgrayhighlightbox}
Beispiel: Würfeln mit zwei Würfeln Beispiel: Würfeln mit zwei Würfeln
@ -281,7 +284,7 @@
X \sim \text{Bin}(N,p) X \sim \text{Bin}(N,p)
\end{gather*} \end{gather*}
\begin{gather*} \begin{gather*}
P_X(k) = \binom{N}{k} p^k (1-p)^{1-k} P_X(k) = \binom{N}{k} p^k (1-p)^{N-k}
\end{gather*} \end{gather*}
\begin{align*} \begin{align*}
E(X) &= Np\\ E(X) &= Np\\
@ -335,7 +338,7 @@
\begin{greenblock}{Binomialverteilung} \begin{greenblock}{Binomialverteilung}
\vspace*{-6mm} \vspace*{-6mm}
\begin{gather*} \begin{gather*}
P_X(k) = \binom{N}{k} p^k (1-p)^{1-k} P_X(k) = \binom{N}{k} p^k (1-p)^{N-k}
\end{gather*} \end{gather*}
\begin{align*} \begin{align*}
E(X) &= Np\\ E(X) &= Np\\
@ -510,9 +513,9 @@
\end{gather*}% \end{gather*}%
\vspace*{-14mm}% \vspace*{-14mm}%
\begin{align*} \begin{align*}
P(R = 0) &= P(A = 0 \text{ und } L = 0) &&\hspace{-24mm}= p_A\cdot p_L &&\hspace{-24mm}= 0{,}56 \\ P(R = 0) &= P(A = 0 \text{ und } L = 0) &&\hspace{-24mm}= (1-p_A)(1-p_L) &&\hspace{-24mm}= 0{,}56\\
P(R = 1) &= P(A=1 \text{ und } L=0) + P(A=0 \text{ und } L=1) &&\hspace{-24mm}= p_A \cdot (1-p_L) + (1-p_A)\cdot p_L &&\hspace{-24mm}= 0{,}38 \\ P(R = 1) &= P(A=1 \text{ und } L=0) + P(A=0 \text{ und } L=1) &&\hspace{-24mm}= p_A \cdot (1-p_L) + (1-p_A)\cdot p_L &&\hspace{-24mm}= 0{,}38 \\
P(R = 2) &= P(A=1 \text{ und } L=1) &&\hspace{-24mm}= (1-p_A)(1-p_L) &&\hspace{-24mm}= 0{,}06 P(R = 2) &= P(A=1 \text{ und } L=1) &&\hspace{-24mm}= p_A\cdot p_L &&\hspace{-24mm}= 0{,}06
\end{align*} \end{align*}
\vspace*{-10mm}\pause \item Der Autofahrer fährt an $200$ unabhängigen Tagen im Jahr über \vspace*{-10mm}\pause \item Der Autofahrer fährt an $200$ unabhängigen Tagen im Jahr über
seinen Arbeitsweg zur Arbeit. Wie viele Strafzettel sammelt der seinen Arbeitsweg zur Arbeit. Wie viele Strafzettel sammelt der
@ -662,7 +665,7 @@
\begin{greenblock}{Erzeugende Funktion} \begin{greenblock}{Erzeugende Funktion}
\vspace*{-6mm} \vspace*{-6mm}
\begin{gather*} \begin{gather*}
\psi(z) = \sum_{n=1}^{\infty} z^n P(x=n)\\[5mm] \psi(z) = \sum_{n=1}^{\infty} z^n P(X=n)\\[5mm]
P(X=n) = \frac{\psi_X^{(n)}(0)}{n!} P(X=n) = \frac{\psi_X^{(n)}(0)}{n!}
\end{gather*} \end{gather*}
\end{greenblock} \end{greenblock}

View File

@ -0,0 +1,731 @@
\ifdefined\ishandout
\documentclass[de, handout]{CELbeamer}
\else
\documentclass[de]{CELbeamer}
\fi
%
%
% CEL Template
%
%
\newcommand{\templates}{preambles}
\input{\templates/packages.tex}
\input{\templates/macros.tex}
\grouplogo{CEL_logo.pdf}
\groupname{Communication Engineering Lab (CEL)}
\groupnamewidth{80mm}
\fundinglogos{}
%
%
% Custom commands
%
%
\input{lib/latex-common/common.tex}
\pgfplotsset{colorscheme/rocket}
\newcommand{\res}{src/2025-12-19/res}
% \tikzstyle{every node}=[font=\small]
% \captionsetup[sub]{font=small}
%
%
% Document setup
%
%
\usepackage{tikz}
\usepackage{tikz-3dplot}
\usetikzlibrary{spy, external, intersections, positioning}
%\tikzexternalize[prefix=build/]
\usepackage{pgfplots}
\pgfplotsset{compat=newest}
\usepgfplotslibrary{fillbetween}
\usepackage{enumerate}
\usepackage{listings}
\usepackage{subcaption}
\usepackage{bbm}
\usepackage{multirow}
\usepackage{xcolor}
\title{WT Tutorium 4}
\author[Tsouchlos]{Andreas Tsouchlos}
\date[]{19. Dezember 2025}
%
%
% Document body
%
%
\begin{document}
\begin{frame}[title white vertical, picture=images/IMG_7801-cut]
\titlepage
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Aufgabe 1}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Theorie Wiederholung}
\begin{frame}
\frametitle{Stetige Zufallsvariablen I}
\vspace*{-10mm}
\begin{lightgrayhighlightbox}
Erinnerung: Diskrete Zufallsvariablen
\begin{align*}
\text{\normalfont Verteilung: }& P_X(x) = P(X = x) \\
\text{\normalfont Verteilungsfunktion: }& F_X(x) = P(X \le x) =
\sum_{n: x_n \le y} P_X(x)
\end{align*}
\vspace{-10mm}
\end{lightgrayhighlightbox}
\begin{columns}[t]
\pause\column{\kitthreecolumns}
\centering
\begin{itemize}
\item Verteilungsfunktion $F_X(x)$ einer stetiger ZV
\begin{gather*}
F_X(x) = P(X \le x)
\end{gather*}
\end{itemize}
\pause\column{\kitthreecolumns}
\centering
\begin{itemize}
\item Wahrscheinlichkeitsdichte $f_X(x)$ einer stetiger ZV
\begin{gather*}
F_X(x) = \int_{-\infty}^{x} f_X(u) du
\end{gather*}
\end{itemize}
\end{columns}
\begin{columns}[t]
\pause \column{\kitthreecolumns}
\centering
\begin{gather*}
\text{Eigenschaften:} \\[3mm]
\lim_{x\rightarrow -\infty} F_X(x) = 0 \\
\lim_{x\rightarrow +\infty} F_X(x) = 1 \\
x_1 \le x_2 \Rightarrow F_X(x_1) \le F_X(x_2)\\
F_X(x+) = \lim_{h\rightarrow 0^+} F_X (x+h) = F_X(x)
\end{gather*}
\pause \column{\kitthreecolumns}
\centering
\begin{gather*}
\text{Eigenschaften:} \\[3mm]
f_X(x) \ge 0 \\
\int_{-\infty}^{\infty} f_X(x) dx = 1
\end{gather*}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Stetige Zufallsvariablen II}
\begin{minipage}{0.6\textwidth}
\begin{itemize}
\item Wichtige Kenngrößen
\begin{align*}
\begin{array}{rlr}
\text{Erwartungswert: } \hspace{5mm} & E(X) =
\displaystyle\int_{-\infty}^{\infty} x f_X(x) dx
& \hspace{5mm} \big( = \mu \big) \\[3mm]
\text{Varianz: } \hspace{5mm} & V(X) = E\mleft(
\mleft( X - E(X) \mright)^2 \mright) \\[3mm]
\text{Standardabweichung: } \hspace{5mm} &
\sqrt{V(X)} & \hspace{5mm} \big( = \sigma \big)
\end{array}
\end{align*}
\end{itemize}
\end{minipage}
\begin{minipage}{0.38\textwidth}
\begin{lightgrayhighlightbox}
Erinnerung
\begin{align*}
\text{\normalfont Erwartungswert: }& E(X) =
\sum_{n=1}^{\infty} x_n P_X(x) \\
\text{\normalfont Varianz: }& V(X) = E\mleft( \mleft(
X - E(X) \mright)^2 \mright)
\end{align*}
\end{lightgrayhighlightbox}
\end{minipage}
\end{frame}
\begin{frame}
\frametitle{Zusammenfassung}
\begin{columns}[t]
\column{\kitthreecolumns}
\centering
\begin{greenblock}{Verteilungsfunktion (kontinuierlich)}
\vspace*{-6mm}
\begin{gather*}
F_X(x) = P(X \le x)\\[4mm]
P(a < X \le b) = F_X(b) - F_X(a) \\[8mm]
\lim_{x\rightarrow -\infty} F_X(x) = 0 \\
\lim_{x\rightarrow +\infty} F_X(x) = 1 \\
x_1 \le x_2 \Rightarrow F_X(x_1) \le F_X(x_2)\\
F_X(x+) = \lim_{h\rightarrow 0^+} F_X (x+h) = F_X(x)
\end{gather*}
\end{greenblock}
\column{\kitthreecolumns}
\centering
\begin{greenblock}{Wahrscheinlichkeitsdichte \phantom{()}}
\vspace*{-6mm}
\begin{gather*}
F_X(x) = \int_{-\infty}^{x} f_X(u) du \\[5mm]
f_X(x) \ge 0 \\
\int_{-\infty}^{\infty} f_X(x) dx = 1
\end{gather*}
\end{greenblock}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Aufgabe}
\begin{frame}
\frametitle{Aufgabe 1: Stetige Verteilungen}
Die Zufallsvariable X besitze die Dichte
% tex-fmt: off
\begin{align*}
f_X (x) = \left\{
\begin{array}{ll}
C \cdot x e^{-ax^2}, & x \ge 0 \\
0, &\text{sonst}
\end{array}
\right.
\end{align*}
% tex-fmt: on
mit dem Parameter $a > 0$.
% tex-fmt: off
\begin{enumerate}[a{)}]
\item Bestimmen Sie den Koeffizienten $C$, sodass $f_X(x)$ eine
Wahrscheinlichkeitsdichte ist. Welche Eigenschaften muss eine
\textbf{Wahrscheinlichkeitsdichte} erfüllen? Skizzieren Sie
$f_X (x)$ für $a = 0{,}5$.
\item Welche Eigenschaften muss eine \textbf{Verteilungsfunktion}
erfüllen?
\item Berechnen und skizzieren Sie die Verteilungsfunktion $F_X (x)$.
\item Welche Wahrscheinlichkeit hat das Ereignis
$\{\omega : 1 < X(\omega) \le 2\}$?
\end{enumerate}
% tex-fmt: on
\end{frame}
\begin{frame}
\frametitle{Aufgabe 1: Stetige Verteilungen}
\vspace*{-15mm}
Die Zufallsvariable X besitze die Dichte
% tex-fmt: off
\begin{align*}
f_X (x) = \left\{
\begin{array}{ll}
C \cdot x e^{-ax^2}, & x \ge 0 \\
0, &\text{sonst}
\end{array}
\right.
\end{align*}
% tex-fmt: on
mit dem Parameter $a > 0$.
% tex-fmt: off
\begin{enumerate}[a{)}]
\item Bestimmen Sie den Koeffizienten $C$, sodass $f_X(x)$ eine
Wahrscheinlichkeitsdichte ist. Welche Eigenschaften muss eine
\textbf{Wahrscheinlichkeitsdichte} erfüllen? Skizzieren Sie
$f_X (x)$ für $a = 0{,}5$.
\pause\begin{columns}
\column{\kitthreecolumns}
\begin{align*}
\text{Eigenschaften:} \hspace{5mm}
\left\{
\begin{array}{rl}
f_X(x) &\ge 0 \\[3mm]
\displaystyle\int_{-\infty}^{\infty} f_X(x) dx &= 1
\end{array}
\right.
\end{align*}
\pause\begin{gather*}
\int_{-\infty}^{\infty} f_X(x) dx
= \int_{-\infty}^{\infty} C\cdot x e^{-ax^2} dx
= \frac{C}{-2a} \int_{-\infty}^{\infty} (-2ax) e^{-ax^2} dx \\
= \frac{C}{-2a} \int_{-\infty}^{\infty} (e^{-ax^2})' dx
= \frac{C}{-2a} \mleft[ e^{-ax^2} \mright]_0^{\infty} \overset{!}{=} 1 \hspace{10mm} \Rightarrow C = 2a
\end{gather*}
\centering
\column{\kitthreecolumns}
\pause \begin{align*}
f_X(x) =
\left\{
\begin{array}{ll}
2ax \cdot e^{-ax^2}, & x\ge 0\\
0, & \text{sonst}
\end{array}
\right.
\end{align*}
\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{axis}[
domain=0:5,
width=12cm,
height=5cm,
samples=100,
xlabel={$x$},
ylabel={$f_X(x)$},
]
\addplot+[mark=none, line width=1pt]
{x * exp(-0.5*x*x)};
% {x *exp(-a*x*x)};
\end{axis}
\end{tikzpicture}
\end{figure}
\end{columns}
\end{enumerate}
% tex-fmt: on
\end{frame}
\begin{frame}
\frametitle{Aufgabe 1: Stetige Verteilungen}
\vspace*{-20mm}
% tex-fmt: off
\begin{enumerate}[a{)}]
\setcounter{enumi}{1}
\item Welche Eigenschaften muss eine \textbf{Verteilungsfunktion}
erfüllen?
\pause\vspace{-10mm}\begin{columns}[t]
\column{\kitonecolumn}
\column{\kittwocolumns}
\centering
\begin{gather*}
\lim_{x\rightarrow -\infty} F_X(x) = 0\\
\lim_{x\rightarrow +\infty} F_X(x) = 1
\end{gather*}
\column{\kittwocolumns}
\centering
\begin{gather*}
x_1 \le x_2 \Rightarrow F_X(x_1) \le F_X(x_2) \\
F_X(x+) = \lim_{h\rightarrow 0^+} F_X (x+h) = F_X(x)
\end{gather*}
\column{\kitonecolumn}
\end{columns}
\pause\item Berechnen und skizzieren Sie die Verteilungsfunktion $F_X (x)$.
\begin{gather*}
f_X(x) = 2ax\cdot e^{-ax^2}, \hspace{5mm} x\ge 0
\end{gather*}
\pause \vspace*{-6mm}\begin{gather*}
F_X(x) = \int_{-\infty}^{x} f_X(u) du
= \left\{ \begin{array}{ll}
\displaystyle\int_{0}^{x} 2au\cdot e^{-au^2} du, & x\ge 0 \\
0, & x < 0
\end{array} \right.
\hspace{5mm} = \left\{ \begin{array}{ll}
\mleft[ -e^{-au^2} \mright]_0^{x}, & x\ge 0 \\
0, & x < 0
\end{array} \right.
\hspace{5mm} = \left\{ \begin{array}{ll}
1 - e^{-ax^2}, & x\ge 0\\
0, & x < 0
\end{array} \right.
\end{gather*}
\pause\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{axis}[
domain=0:5,
width=14cm,
height=5cm,
xlabel={$x$},
ylabel={$F_X(x)$},
]
\addplot+[mark=none, line width=1pt]
{1 - exp(-0.5 * x*x)};
\end{axis}
\end{tikzpicture}
\end{figure}
\vspace*{-3mm}
\pause\item Welche Wahrscheinlichkeit hat das Ereignis
$\{\omega : 1 < X(\omega) \le 2\}$?
\pause \begin{gather*}
P(\mleft\{ \omega: 1 < X(\omega) \le 2 \mright\})
= P(1 < X \le 2) = F_X(2) - F_X(1) = e^{-a} - e^{-4a}
\end{gather*}
\end{enumerate}
% tex-fmt: on
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Aufgabe 2}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Theorie Wiederholung}
\begin{frame}
\frametitle{Die Normalverteilung}
\begin{columns}
\column{\kitthreecolumns}
\centering
\begin{gather*}
X \sim \mathcal{N}\mleft( \mu, \sigma^2 \mright)
\end{gather*}%
\vspace{0mm}
\begin{align*}
f_X(x) &= \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left(\frac{(x -
\mu)^2}{2 \sigma^2} \right) \\[2mm]
F_X(x) &=
\vcenter{\hbox{\scalebox{1.5}[2.6]{\vspace*{3mm}$\displaystyle\int$}}}_{\hspace{-0.5em}-\infty}^{\,x}
\frac{1}{\sqrt{2\pi
\sigma^2}} \exp\left(\frac{(u - \mu)^2}{2 \sigma^2} \right) du
\end{align*}
\column{\kitthreecolumns}
\centering
\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{axis}[
domain=-4:4,
xmin=-4,xmax=4,
width=15cm,
height=5cm,
samples=200,
xlabel={$x$},
ylabel={$f_X(x)$},
xtick={0},
xticklabels={\textcolor{KITblue}{$\mu$}},
ytick={0},
]
\addplot+[mark=none, line width=1pt]
{(1 / sqrt(2*pi)) * exp(-x*x)};
\addplot+ [KITblue, mark=none, line width=1pt]
coordinates {(-0.5, 0.15) (0.5, 0.15)};
\addplot+ [KITblue, mark=none, line width=1pt]
coordinates {(-0.5, 0.12) (-0.5, 0.18)};
\addplot+ [KITblue, mark=none, line width=1pt]
coordinates {(0.5, 0.12) (0.5, 0.18)};
\node[KITblue] at (axis cs: 0, 0.2) {$\sigma$};
% \addplot +[scol2, mark=none, line width=1pt]
% coordinates {(4.8, -1) (4.8, 2)};
% \addplot +[scol2, mark=none, line width=1pt]
% coordinates {(5.2, -1) (5.2, 2)};
% \node at (axis cs: 4.8, 3) {$S(1-\delta)$};
% \node at (axis cs: 5.2, 3) {$S(1+\delta)$};
\end{axis}
\end{tikzpicture}
\end{figure}
\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{axis}[
domain=-4:4,
xmin=-4,xmax=4,
width=15cm,
height=5cm,
samples=200,
xlabel={$x$},
ylabel={$F_X(x)$},
xtick=\empty,
ytick={0, 1},
]
\addplot+[mark=none, line width=1pt]
{1 / (1 + exp(-(1.526*x*(1 + 0.1034*x))))};
\end{axis}
\end{tikzpicture}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Rechnen mithilfe der Standardnormalverteilung}
\vspace*{-15mm}
\begin{itemize}
\item Die Standardnormalverteilung
\end{itemize}
\begin{minipage}{0.48\textwidth}
\centering
\begin{gather*}
X \sim \mathcal{N} (0,1) \\[4mm]
\Phi(x) := F_X(x) = P(X \le x) \\
\Phi(-x) = 1 - \Phi(x)
\end{gather*}
\end{minipage}%
\begin{minipage}{0.48\textwidth}
\centering
\begin{tabular}{|c|c||c|c||c|c|}
\hline
$x$ & $\Phi(x)$ & $x$ & $\Phi(x)$ & $x$ & $\Phi(x)$ \\
\hline
\hline
$0{,}00$ & $0{,}500000$ & $0{,}10$ & $0{,}539828$ &
$0{,}20$ & $0{,}579260$ \\
$0{,}02$ & $0{,}507978$ & $0{,}12$ & $0{,}547758$ &
$0{,}22$ & $0{,}587064$ \\
$0{,}04$ & $0{,}515953$ & $0{,}14$ & $0{,}555670$ &
$0{,}24$ & $0{,}594835$ \\
$0{,}06$ & $0{,}523922$ & $0{,}16$ & $0{,}563559$ &
$0{,}26$ & $0{,}602568$ \\
$0{,}08$ & $0{,}531881$ & $0{,}18$ & $0{,}571424$ &
$0{,}28$ & $0{,}610261$ \\
\hline
\end{tabular}\\
\end{minipage}
\pause
\begin{itemize}
\item Standardisierte ZV
\begin{gather*}
\begin{array}{cc}
E(X) &= 0 \\
V(X) &= 1
\end{array}
\hspace{45mm}
\text{Standardisierung: } \hspace{5mm}
\widetilde{X} = \frac{X - E(X)}{\sqrt{V(X)}}
= \frac{X - \mu}{\sigma}
\end{gather*}
\end{itemize}
\vspace*{3mm}
\pause
\begin{lightgrayhighlightbox}
Rechenbeispiel
\begin{gather*}
X \sim \mathcal{N}(\mu = 1, \sigma^2 = 0{,}5^2) \\[2mm]
P\left(X \le 1{,}12 \right)
= P\left(\frac{X - 1}{0{,}5} \le \frac{1{,}12 - 1}{0{,}5}\right)
= P\big(\underbrace{\widetilde{X}}_{\sim
\mathcal{N}(0,1)} \le 0{,}24\big)
= \Phi\left(0{,}24\right) = 0{,}594835
\end{gather*}
\end{lightgrayhighlightbox}
\end{frame}
\begin{frame}
\frametitle{Zusammenfassung}
\vspace*{-15mm}
\begin{columns}[t]
\column{\kitthreecolumns}
\centering
\begin{greenblock}{Standardnormalverteilung}
\vspace*{-10mm}
\begin{gather*}
X \sim \mathcal{N} (0,1) \\[4mm]
\Phi(x) := F_X(x) = P(X \le x) \\
\Phi(-x) = 1 - \Phi(x)
\end{gather*}
\end{greenblock}
\column{\kitthreecolumns}
\centering
\begin{greenblock}{Standardisierung}
\vspace*{-10mm}
\begin{gather*}
\widetilde{X} = \frac{X - E(X)}{\sqrt{V(X)}}
= \frac{X - \mu}{\sigma}
\end{gather*}
\end{greenblock}
\end{columns}
\vspace{5mm}
\begin{table}
\centering
% \cdots
\begin{tabular}{|c|c||c|c||c|c||c|c|}
\hline
$x$ & $\Phi(x)$ & $x$ & $\Phi(x)$ & $x$ & $\Phi(x)$ & $x$
& $\Phi(x)$ \\
\hline
\hline
$1{,}40$ & $0{,}919243$ & $2{,}80$ & $0{,}997445$ &
$3{,}00$ & $0{,}998650$ & $4{,}20$ & $0{,}999987$ \\
$1{,}42$ & $0{,}922196$ & $2{,}82$ & $0{,}997599$ &
$3{,}02$ & $0{,}998736$ & $4{,}22$ & $0{,}999988$ \\
$1{,}44$ & $0{,}925066$ & $2{,}84$ & $0{,}997744$ &
$3{,}04$ & $0{,}998817$ & $4{,}24$ & $0{,}999989$ \\
$1{,}46$ & $0{,}927855$ & $2{,}86$ & $0{,}997882$ &
$3{,}06$ & $0{,}998893$ & $4{,}26$ & $0{,}999990$ \\
$1{,}48$ & $0{,}930563$ & $2{,}88$ & $0{,}998012$ &
$3{,}08$ & $0{,}998965$ & $4{,}28$ & $0{,}999991$ \\
\hline
\end{tabular}
% \cdots
\end{table}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Aufgabe}
\begin{frame}
\frametitle{Aufgabe 2: Normalverteilung}
In einem Produktionsprozess werden Ladegeräte für Mobiltelefone
hergestellt. Bevor die Ladegeräte mit den Mobiltelefonen zusammen
verpackt werden, wird die Ladespannung von jedem Ladegerät einmal
gemessen. Die Messwerte der Ladespannungen der verschiedenen
Ladegeräte genüge näherungsweise einer normalverteilten
Zufallsvariablen mit $\mu = 5$ Volt und $\sigma = 0,07$ Volt. Alle
Ladegeräte, bei denen die Messung um mehr als $4$ \% vom Sollwert
$S = 5$ Volt abweicht, sollen aussortiert werden.
% tex-fmt: off
\begin{enumerate}[a{)}]
\item Wie viel Prozent der Ladegeräte werden aussortiert?
\item Der Hersteller möchte seinen Produktionsprozess so verbessern,
dass nur noch halb so viele Ladegeräte wie in a) aussortiert
werden. Auf welchen Wert müsste er dazu $\sigma$ senken?
\item Durch einen Produktionsfehler verschiebt sich der Mittelwert
$\mu$ auf $5{,}1$ Volt ($\sigma$ ist $0{,}07$ Volt). Wie groß ist
jetzt der Prozentsatz, der aussortiert wird?
\end{enumerate}
% tex-fmt: on
\end{frame}
\begin{frame}
\frametitle{Aufgabe 2: Normalverteilung}
\vspace*{-10mm}
In einem Produktionsprozess werden Ladegeräte für Mobiltelefone
hergestellt. Bevor die Ladegeräte mit den Mobiltelefonen zusammen
verpackt werden, wird die Ladespannung von jedem Ladegerät einmal
gemessen. Die Messwerte der Ladespannungen der verschiedenen
Ladegeräte genüge näherungsweise einer normalverteilten
Zufallsvariablen mit $\mu = 5$ Volt und $\sigma = 0,07$ Volt. Alle
Ladegeräte, bei denen die Messung um mehr als $4$ \% vom Sollwert
$S = 5$ Volt abweicht, sollen aussortiert werden.
% tex-fmt: off
\begin{enumerate}[a{)}]
\item Wie viel Prozent der Ladegeräte werden aussortiert?
\begin{columns}[c]
\column{\kitthreecolumns}
\centering
\pause \begin{gather*}
X \sim \mathcal{N} \mleft( \mu = 0{,}5, \sigma^2 = 0{,}07^2 \mright)
\end{gather*}
\begin{align*}
P(E_\text{a}) &= P \Big( \big( X < S(1-\delta) \big)
\cup \big( X > S(1 + \delta) \big) \Big) \\
&= P(X < S(1 - \delta)) + P(X > S(1 + \delta)) \\[2mm]
&\overset{\widetilde{X} := \frac{X - \mu}{\sigma} }{=\joinrel=\joinrel=\joinrel=} P\left(\widetilde{X} < \frac{S(1 - \delta) - \mu}{\sigma}\right)
+ P\left(\widetilde{X} > \frac{S(1 + \delta) - \mu}{\sigma}\right) \\[2mm]
&\approx \Phi(-2{,}86) + \left(1 - \Phi(2{,}86)\right) \\
&= 2 - 2\Phi(2{,}86) \approx 0{,}424\text{\%}
\end{align*}
\column{\kitthreecolumns}
\centering
\pause\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{axis}[
domain=4.6:5.3,
xmin=4.7, xmax=5.3,
width=14cm,
height=6cm,
xlabel={$x$},
ylabel={$F_X (x)$},
samples=100,
xtick = {4.6,4.7,4.8,...,5.4}
]
\addplot+[mark=none, line width=1pt]
{1 / sqrt(2*3.1415*0.07*0.07) * exp(-(x - 5)*(x-5)/(2*0.07*0.07))};
\addplot +[KITblue, mark=none, line width=1pt] coordinates {(4.8, -1) (4.8, 2)};
\addplot +[KITblue, mark=none, line width=1pt] coordinates {(5.2, -1) (5.2, 2)};
\node at (axis cs: 4.8, 3) {$S(1-\delta)$};
\node at (axis cs: 5.2, 3) {$S(1+\delta)$};
\end{axis}
\end{tikzpicture}
\end{figure}
\end{columns}
\end{enumerate}
% tex-fmt: on
\end{frame}
\begin{frame}
\frametitle{Aufgabe 2: Normalverteilung}
\vspace*{-18mm}
% tex-fmt: off
\begin{enumerate}[a{)}]
\setcounter{enumi}{1}
\item Der Hersteller möchte seinen Produktionsprozess so verbessern,
dass nur noch halb so viele Ladegeräte wie in a) aussortiert
werden. Auf welchen Wert müsste er dazu $\sigma$ senken?
\pause\begin{gather*}
P(E_\text{b}) = \frac{1}{2} P(E_\text{a}) \approx 0{,}212\text{\%} \\
\end{gather*}
\vspace*{-18mm}
\begin{columns}
\pause\column{\kitthreecolumns}
\centering
\begin{align*}
P(E_\text{b}) &\overset{\text{a)}}{=} P\left(\widetilde{X} < \frac{S(1 - \delta) - \mu}{\sigma'}\right)
+ P\left(\widetilde{X} > \frac{S(1 + \delta) - \mu}{\sigma'}\right) \\[2mm]
&= P\left(\widetilde{X} < -\frac{0{,}2}{\sigma'}\right)
+ P\left(\widetilde{X} > \frac{0{,}2}{\sigma'}\right) \\[2mm]
&= \Phi\left(-\frac{0{,}2}{\sigma'}\right)
+ \left(1 - \Phi\left(\frac{0{,}2}{\sigma'} \right)\right) \\[2mm]
&= 2 - 2 \Phi\left(\frac{0{,}2}{\sigma'} \right)
\end{align*}
\pause\column{\kitthreecolumns}
\centering
\begin{gather*}
2 - 2\Phi\left(\frac{0{,}2}{\sigma'}\right) = 2{,}12\cdot 10^{-3} \\[2mm]
\Rightarrow \Phi\left(\frac{0{,}2}{\sigma'}\right) \approx 0{,}9989 \\[2mm]
\Rightarrow \sigma' \approx \frac{0{,}2}{\Phi^{-1}(0{,}9989)}
\approx \frac{0{,}2}{3{,}08} \approx 0{,}65
\end{gather*}
\end{columns}
\pause \vspace*{-5mm}\item Durch einen Produktionsfehler verschiebt sich der
Mittelwert $\mu$ auf $5{,}1$ Volt ($\sigma$ ist $0{,}07$ Volt).
Wie groß ist jetzt der Prozentsatz, der aussortiert wird?
\pause \begin{align*}
P(E_\text{c}) &\overset{\text{a)}}{=} P\left(\widetilde{X} < \frac{S(1 - \delta) - \mu}{\sigma}\right)
+ P\left(\widetilde{X} > \frac{S(1 + \delta) - \mu}{\sigma}\right) \\[2mm]
&\approx \Phi(-4{,}29) + (1 - \Phi(1{,}43)) \\
& = 2 - \Phi(4{,}29) - \Phi(1{,}43) \approx 7{,}78 \text{\%}
\end{align*}
\end{enumerate}
% tex-fmt: on
\end{frame}
\end{document}