Add pauses; Fix decimal point -> decimal comma
This commit is contained in:
parent
4e39722899
commit
6942d2386e
@ -101,7 +101,9 @@
|
||||
\begin{itemize}
|
||||
\item Verteilungsfunktion $F_X(x)$ einer stetiger ZV
|
||||
\begin{gather*}
|
||||
F_X(x) = P(X \le x) \\[5mm]
|
||||
F_X(x) = P(X \le x)
|
||||
\end{gather*}
|
||||
\pause\vspace{-10mm}\begin{gather*}
|
||||
\text{Eigenschaften:} \\[3mm]
|
||||
\lim_{x\rightarrow -\infty} F_X(x) = 0 \\
|
||||
\lim_{x\rightarrow +\infty} F_X(x) = 1 \\
|
||||
@ -114,7 +116,9 @@
|
||||
\begin{itemize}
|
||||
\item Wahrscheinlichkeitsdichte $f_X(x)$ einer stetiger ZV
|
||||
\begin{gather*}
|
||||
F_X(x) = \int_{-\infty}^{x} f_X(u) du \\[5mm]
|
||||
F_X(x) = \int_{-\infty}^{x} f_X(u) du
|
||||
\end{gather*}
|
||||
\pause\vspace{-10mm}\begin{gather*}
|
||||
\text{Eigenschaften:} \\[3mm]
|
||||
f_X(x) \ge 0 \\
|
||||
\int_{-\infty}^{\infty} f_X(x) dx = 1
|
||||
@ -465,8 +469,8 @@
|
||||
&= P(X < S(1 - \delta)) + P(X > S(1 + \delta)) \\[2mm]
|
||||
&= P\left(Z < \frac{S(1 - \delta) - \mu}{\sigma}\right)
|
||||
+ P\left(Z > \frac{S(1 + \delta) - \mu}{\sigma}\right) \\[2mm]
|
||||
&\approx \Phi(-2.86) + \left(1 - \Phi(2.86)\right) \\
|
||||
&= 2 - 2\Phi(2.86) \approx 0{,}424\text{\%}
|
||||
&\approx \Phi(-2{,}86) + \left(1 - \Phi(2{,}86)\right) \\
|
||||
&= 2 - 2\Phi(2{,}86) \approx 0{,}424\text{\%}
|
||||
\end{align*}
|
||||
\column{\kitthreecolumns}
|
||||
\centering
|
||||
@ -512,7 +516,7 @@
|
||||
dass nur noch halb so viele Ladegeräte wie in a) aussortiert
|
||||
werden. Auf welchen Wert müsste er dazu $\sigma$ senken?
|
||||
\pause\begin{gather*}
|
||||
P(E_\text{b}) = \frac{1}{2} P(E_\text{a}) \approx 0.212\text{\%} \\
|
||||
P(E_\text{b}) = \frac{1}{2} P(E_\text{a}) \approx 0{,}212\text{\%} \\
|
||||
\end{gather*}
|
||||
\vspace*{-18mm}
|
||||
\begin{columns}
|
||||
@ -530,10 +534,10 @@
|
||||
\pause\column{\kitthreecolumns}
|
||||
\centering
|
||||
\begin{gather*}
|
||||
2 - 2\Phi\left(\frac{0.2}{\sigma'}\right) = 2{,}12\cdot 10^{-3} \\
|
||||
\Rightarrow \Phi\left(\frac{0.2}{\sigma'}\right) \approx 0.9989 \\
|
||||
2 - 2\Phi\left(\frac{0{,}2}{\sigma'}\right) = 2{,}12\cdot 10^{-3} \\[2mm]
|
||||
\Rightarrow \Phi\left(\frac{0{,}2}{\sigma'}\right) \approx 0{,}9989 \\[2mm]
|
||||
\Rightarrow \sigma' \approx \frac{0{,}2}{\Phi^{-1}(0{,}9989)}
|
||||
\approx \frac{0{,}2}{3{,}08} \approx 0.65
|
||||
\approx \frac{0{,}2}{3{,}08} \approx 0{,}65
|
||||
\end{gather*}
|
||||
\end{columns}
|
||||
\pause \vspace*{-5mm}\item Durch einen Produktionsfehler verschiebt sich der
|
||||
@ -543,7 +547,7 @@
|
||||
P(E_\text{c}) &\overset{\text{a)}}{=} P\left(Z < \frac{S(1 - \delta) - \mu}{\sigma}\right)
|
||||
+ P\left(Z > \frac{S(1 + \delta) - \mu}{\sigma}\right) \\[2mm]
|
||||
&\approx \Phi(-4{,}29) + (1 - \Phi(1{,}43)) \\
|
||||
& = 2 - \Phi(4{,}29) - \Phi(1{,}43) \approx 7.78 \text{\%}
|
||||
& = 2 - \Phi(4{,}29) - \Phi(1{,}43) \approx 7{,}78 \text{\%}
|
||||
\end{align*}
|
||||
\end{enumerate}
|
||||
% tex-fmt: on
|
||||
|
||||
Loading…
Reference in New Issue
Block a user