Add theory for part 2

This commit is contained in:
Andreas Tsouchlos 2025-12-17 01:03:47 +01:00
parent aae0aae77b
commit 5bf78e09e1

View File

@ -386,50 +386,194 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Theorie Wiederholung}
% TODO: Write
% TODO: Plot
% TODO: Mention it appears regularly because of the CLT
\begin{frame}
\frametitle{Die Normalverteilung}
\begin{itemize}
\item TODO
\begin{align*}
f_X(x) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left(\frac{(x - \mu)^2}{2 \sigma^2} \right) \\
\end{align*}
\end{itemize}
\begin{columns}
\column{\kitthreecolumns}
\centering
\begin{gather*}
X \sim \mathcal{N}\mleft( \mu, \sigma^2 \mright)
\end{gather*}%
\vspace{2mm}
\begin{align*}
f_X(x) &= \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left(\frac{(x -
\mu)^2}{2 \sigma^2} \right) \\[2mm]
F_X(x) &=
\vcenter{\hbox{\scalebox{1.5}[2.6]{\vspace*{3mm}$\displaystyle\int$}}}_{\hspace{-0.5em}-\infty}^{\,x}
\frac{1}{\sqrt{2\pi
\sigma^2}} \exp\left(\frac{(u - \mu)^2}{2 \sigma^2} \right) du
\end{align*}
\column{\kitthreecolumns}
\centering
\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{axis}[
domain=-4:4,
xmin=-4,xmax=4,
width=15cm,
height=5cm,
samples=200,
xlabel={$x$},
ylabel={$f_X(x)$},
xtick={0},
xticklabels={\textcolor{KITblue}{$\mu$}},
ytick={0},
]
\addplot+[mark=none, line width=1pt]
{(1 / sqrt(2*pi)) * exp(-x*x)};
\addplot+ [KITblue, mark=none, line width=1pt]
coordinates {(-0.5, 0.15) (0.5, 0.15)};
\addplot+ [KITblue, mark=none, line width=1pt]
coordinates {(-0.5, 0.12) (-0.5, 0.18)};
\addplot+ [KITblue, mark=none, line width=1pt]
coordinates {(0.5, 0.12) (0.5, 0.18)};
\node[KITblue] at (axis cs: 0, 0.2) {$\sigma$};
% \addplot +[scol2, mark=none, line width=1pt]
% coordinates {(4.8, -1) (4.8, 2)};
% \addplot +[scol2, mark=none, line width=1pt]
% coordinates {(5.2, -1) (5.2, 2)};
% \node at (axis cs: 4.8, 3) {$S(1-\delta)$};
% \node at (axis cs: 5.2, 3) {$S(1+\delta)$};
\end{axis}
\end{tikzpicture}
\end{figure}
\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{axis}[
domain=-4:4,
xmin=-4,xmax=4,
width=15cm,
height=5cm,
samples=200,
xlabel={$x$},
ylabel={$F_X(x)$},
xtick=\empty,
ytick={0, 1},
]
\addplot+[mark=none, line width=1pt]
{1 / (1 + exp(-(1.526*x*(1 + 0.1034*x))))};
\end{axis}
\end{tikzpicture}
\end{figure}
\end{columns}
\end{frame}
% TODO: Write
% TODO: Define Phi
% TODO: Phi Rechenregeln
% TODO: Define Explain use of tables
% TODO: Are Z/z notation used in the lecture?
\begin{frame}
\frametitle{Rechnen mithilfe der Standardnormalverteilung}
\vspace*{-15mm}
\begin{itemize}
\item Standardisierte ZV:
\begin{align*}
E(X) &= 0 \\
V(X) &= 1
\end{align*}
\item Standardisierung einer ZV:
\begin{align*}
\widetilde{X} = \frac{X - E(X)}{\sqrt{V(X)}}
\end{align*}
\item TODO:
\item Die Standardnormalverteilung
\end{itemize}
\begin{minipage}{0.48\textwidth}
\centering
\begin{gather*}
Z \sim \mathcal{N} (0,1) \\[4mm]
\Phi(z) := F_Z(z) = P(Z \le z) \\
\Phi(-z) = 1 - \Phi(z)
\end{gather*}
\end{minipage}%
\begin{minipage}{0.48\textwidth}
\centering
\begin{tabular}{|c|c||c|c||c|c|}
\hline
$z$ & $\Phi(z)$ & $z$ & $\Phi(z)$ & $z$ & $\Phi(z)$ \\
\hline
\hline
0{,}00 & 0{,}500000 & 0{,}10 & 0{,}539828 & 0{,}20 & 0{,}579260 \\
0{,}02 & 0{,}507978 & 0{,}12 & 0{,}547758 & 0{,}22 & 0{,}587064 \\
0{,}04 & 0{,}515953 & 0{,}14 & 0{,}555670 & 0{,}24 & 0{,}594835 \\
0{,}06 & 0{,}523922 & 0{,}16 & 0{,}563559 & 0{,}26 & 0{,}602568 \\
0{,}08 & 0{,}531881 & 0{,}18 & 0{,}571424 & 0{,}28 & 0{,}610261 \\
\hline
\end{tabular}\\
\end{minipage}
\pause
\begin{itemize}
\item Standardisierte ZV
\begin{gather*}
X \sim \mathcal{N}(\mu, \sigma^2) \\[5mm]
P(X \le a) = P\bigg(\underbrace{\frac{X - \mu}{\sigma}}_{:= Z \sim \mathcal{N}(0,1)} \le \frac{a - \mu}{\sigma}\bigg)
= P\bigg(Z \le \frac{a - \mu}{\sigma}\bigg) = \Phi\mleft( \frac{a - \mu}{\sigma} \mright)
\begin{array}{cc}
E(X) &= 0 \\
V(X) &= 1
\end{array}
\hspace{45mm}
\text{Standardisierung: } \hspace{5mm}
\widetilde{X} = \frac{X - E(X)}{\sqrt{V(X)}}
= \frac{X - \mu}{\sigma}
\end{gather*}
\end{itemize}
\vspace*{5mm}
\pause
\begin{lightgrayhighlightbox}
Rechenbeispiel
\begin{gather*}
X \sim \mathcal{N}(\mu = 1, \sigma^2 = 0{,}5^2) \\[2mm]
P\left(X \le 1{,}12 \right)
= P\left(\frac{X - 1}{0{,}5} \le \frac{1{,}12 - 1}{0{,}5}\right)
= P\left(\frac{X - 1}{0{,}5} \le
0{,}24\right) = \Phi\left(0{,}24\right) = 0{,}594835
\end{gather*}
\end{lightgrayhighlightbox}
\end{frame}
% TODO: Write
% TODO: Include Phi table?
% TODO: Are Z/z notation used in the lecture?
\begin{frame}
\frametitle{Zusammenfassung}
\vspace*{-15mm}
\begin{columns}[t]
\column{\kitthreecolumns}
\centering
\begin{greenblock}{Standardnormalverteilung}
\vspace*{-10mm}
\begin{gather*}
Z \sim \mathcal{N} (0,1) \\[4mm]
\Phi(z) := F_Z(z) = P(Z \le z) \\
\Phi(-z) = 1 - \Phi(z)
\end{gather*}
\end{greenblock}
\column{\kitthreecolumns}
\centering
\begin{greenblock}{Standardisierung}
\vspace*{-10mm}
\begin{gather*}
\widetilde{X} = \frac{X - E(X)}{\sqrt{V(X)}}
= \frac{X - \mu}{\sigma}
\end{gather*}
\end{greenblock}
\end{columns}
\vspace{5mm}
\begin{table}
\centering
% \cdots
\begin{tabular}{|c|c||c|c||c|c||c|c|}
\hline
$z$ & $\Phi(z)$ & $z$ & $\Phi(z)$ & $z$ & $\Phi(z)$ & $z$ & $\Phi(z)$ \\
\hline
\hline
1{,}40 & 0{,}919243 & 2{,}80 & 0{,}997445 & 3{,}00 & 0{,}998650 & 4{,}20 & 0{,}999987 \\
1{,}42 & 0{,}922196 & 2{,}82 & 0{,}997599 & 3{,}02 & 0{,}998736 & 4{,}22 & 0{,}999988 \\
1{,}44 & 0{,}925066 & 2{,}84 & 0{,}997744 & 3{,}04 & 0{,}998817 & 4{,}24 & 0{,}999989 \\
1{,}46 & 0{,}927855 & 2{,}86 & 0{,}997882 & 3{,}06 & 0{,}998893 & 4{,}26 & 0{,}999990 \\
1{,}48 & 0{,}930563 & 2{,}88 & 0{,}998012 & 3{,}08 & 0{,}998965 & 4{,}28 & 0{,}999991 \\
\hline
\end{tabular}
% \cdots
\end{table}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -481,7 +625,7 @@
\column{\kitthreecolumns}
\centering
\pause \begin{gather*}
X \sim \mathcal{N} \mleft( \mu = 0{,}5, \sigma = 0{,}07^2 \mright)
X \sim \mathcal{N} \mleft( \mu = 0{,}5, \sigma^2 = 0{,}07^2 \mright)
\end{gather*}
\begin{align*}
P(E_\text{a}) &= P \Big( \big( X < S(1-\delta) \big)
@ -511,8 +655,8 @@
\addplot+[mark=none, line width=1pt]
{1 / sqrt(2*3.1415*0.07*0.07) * exp(-(x - 5)*(x-5)/(2*0.07*0.07))};
\addplot +[scol2, mark=none, line width=1pt] coordinates {(4.8, -1) (4.8, 2)};
\addplot +[scol2, mark=none, line width=1pt] coordinates {(5.2, -1) (5.2, 2)};
\addplot +[KITblue, mark=none, line width=1pt] coordinates {(4.8, -1) (4.8, 2)};
\addplot +[KITblue, mark=none, line width=1pt] coordinates {(5.2, -1) (5.2, 2)};
\node at (axis cs: 4.8, 3) {$S(1-\delta)$};
\node at (axis cs: 5.2, 3) {$S(1+\delta)$};