Add solution for exercise 1b
This commit is contained in:
parent
dcd018c236
commit
a4df0108de
@ -124,6 +124,8 @@
|
|||||||
\begin{frame}[fragile]
|
\begin{frame}[fragile]
|
||||||
\frametitle{Aufgabe 1:\\Faltungssatz \& Charakteristische Funktion}
|
\frametitle{Aufgabe 1:\\Faltungssatz \& Charakteristische Funktion}
|
||||||
|
|
||||||
|
\vspace*{-3mm}
|
||||||
|
|
||||||
Es seien zwei unabhängige poissonverteilte Zufallsvariablen $X$ und
|
Es seien zwei unabhängige poissonverteilte Zufallsvariablen $X$ und
|
||||||
$Y$ mit den Parametern $\lambda_1$
|
$Y$ mit den Parametern $\lambda_1$
|
||||||
bzw. $\lambda_2$ gegeben.
|
bzw. $\lambda_2$ gegeben.
|
||||||
@ -142,11 +144,10 @@
|
|||||||
\Leftrightarrow \hspace{3mm} P_Y(k)
|
\Leftrightarrow \hspace{3mm} P_Y(k)
|
||||||
= \frac{\lambda_2^k \cdot e^{-\lambda_2}}{k!}
|
= \frac{\lambda_2^k \cdot e^{-\lambda_2}}{k!}
|
||||||
\end{gather*}
|
\end{gather*}
|
||||||
\vspace{2mm}
|
|
||||||
\pause\begin{align*}
|
\pause\begin{align*}
|
||||||
P_Z(n) &= P_{X+Y}(n) = \nsum_{k=0}^{n} P_X(k)P_Y(n-k)
|
P_Z(n) &= P_{X+Y}(n) = \nsum_{k=0}^{n} P_X(k)P_Y(n-k)
|
||||||
= \nsum_{k=0}^{n} \frac{\lambda_1^k \cdot e^{-\lambda_1}}{k!}
|
= \nsum_{k=0}^{n} \frac{\lambda_1^k \cdot e^{-\lambda_1}}{k!}
|
||||||
\cdot \frac{\lambda_2^{n-k} \cdot e^{-\lambda_2}}{(n-k)!} \\[3mm]
|
\cdot \frac{\lambda_2^{n-k} \cdot e^{-\lambda_2}}{(n-k)!} \\[1mm]
|
||||||
&= e^{-(\lambda_1 + \lambda_2)} \nsum_{k=0}^{n}
|
&= e^{-(\lambda_1 + \lambda_2)} \nsum_{k=0}^{n}
|
||||||
\frac{1}{k! (n-k)!} \lambda_1^k \lambda_2^{n-k} \\[3mm]
|
\frac{1}{k! (n-k)!} \lambda_1^k \lambda_2^{n-k} \\[3mm]
|
||||||
&= \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} \nsum_{k=0}^{n}
|
&= \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} \nsum_{k=0}^{n}
|
||||||
@ -155,12 +156,37 @@
|
|||||||
\binom{n}{k} \lambda_1^k \lambda_2^{n-k}
|
\binom{n}{k} \lambda_1^k \lambda_2^{n-k}
|
||||||
= \frac{e^{-(\lambda_1 + \lambda_2)}}{n!}
|
= \frac{e^{-(\lambda_1 + \lambda_2)}}{n!}
|
||||||
( \lambda_1 + \lambda_2 )^n
|
( \lambda_1 + \lambda_2 )^n
|
||||||
=: \frac{\lambda^n e^{-\lambda}}{n!}
|
=: \frac{\lambda^n e^{-\lambda}}{n!} \\[6mm]
|
||||||
|
& \hspace*{-15mm}\Rightarrow Z \sim \text{Poisson}(\lambda_1 + \lambda_2)
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\pause\item Erbringen Sie denselben Nachweis mithilfe der
|
\end{enumerate}
|
||||||
|
% tex-fmt: on
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}
|
||||||
|
\frametitle{Aufgabe 1:\\Faltungssatz \& Charakteristische Funktion}
|
||||||
|
|
||||||
|
% tex-fmt: off
|
||||||
|
\begin{enumerate}[a{)}]
|
||||||
|
\setcounter{enumi}{1}
|
||||||
|
\item Erbringen Sie denselben Nachweis mithilfe der
|
||||||
charakteristischen Funktion.
|
charakteristischen Funktion.
|
||||||
|
\pause\begin{gather*}
|
||||||
|
X \sim \text{Poisson}(\lambda_1) \hspace{3mm}
|
||||||
|
\Leftrightarrow \hspace{3mm}
|
||||||
|
\phi_X(s) = \text{exp}\left(\lambda_1 (e^{js} -1)\right)
|
||||||
|
\hspace{30mm}
|
||||||
|
Y \sim \text{Poisson}(\lambda_1) \hspace{3mm}
|
||||||
|
\Leftrightarrow \hspace{3mm}
|
||||||
|
\phi_Y(s) = \text{exp}\left(\lambda_2 (e^{js} -1)\right)
|
||||||
|
\end{gather*}
|
||||||
|
\vspace*{-5mm}
|
||||||
\pause\begin{align*}
|
\pause\begin{align*}
|
||||||
% TODO: Write solution
|
\phi_Z(s) &= \phi_X(s) \cdot \phi_Y(s) \\
|
||||||
|
&= \text{exp}\left(\lambda_2 (e^{js} -1)\right) \cdot
|
||||||
|
\text{exp}\left(\lambda_2 (e^{js} -1)\right) \\
|
||||||
|
&= \text{exp}\left((\lambda_1 + \lambda_2) (e^{js} -1)\right) \\[4mm]
|
||||||
|
& \hspace*{-15mm}\Rightarrow Z \sim \text{Poisson}(\lambda_1 + \lambda_2)
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
% tex-fmt: on
|
% tex-fmt: on
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user