Add Poisson distribution explanation
This commit is contained in:
parent
8eb3a6378f
commit
33ff39f974
@ -96,16 +96,68 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Theorie Wiederholung}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Unabhängige Zufallsvariablen}
|
||||
|
||||
\begin{itemize}
|
||||
\item Korrelation $\ne$ Unabhängigkeit (außer bei Normalverteilung)
|
||||
\item Faltungssatz
|
||||
\item Charakteristische Funktion für Summen
|
||||
\end{itemize}
|
||||
|
||||
\begin{itemize}
|
||||
\item Unabhängigkeit hat nichts mit den Einzelverteilungen zu
|
||||
tun, sie ist "eine Ebene höher"
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Poisson-Verteilung}
|
||||
|
||||
\vspace*{-10mm}
|
||||
|
||||
\begin{itemize}
|
||||
\item Binomialverteilung für $N\rightarrow \infty$ mit
|
||||
$pN=\text{const.}=: \lambda$ \\
|
||||
\begin{itemize}
|
||||
\item ``Übergang von diskreter auf stetige
|
||||
Zeitachse bei fester mittlerer Rate'' \\
|
||||
\item $\lambda \equiv$ ``mittlere Rate an Treffern
|
||||
pro Zeitabschnitt''
|
||||
\end{itemize}
|
||||
\item Beispiele
|
||||
\begin{itemize}
|
||||
\item Sternschnuppen pro Stunde
|
||||
\item Anzahl an Websitebesuchern pro Minute
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
\begin{gather*}
|
||||
X \sim \text{Poisson}(\lambda)
|
||||
\end{gather*}
|
||||
\vspace*{-2mm}
|
||||
\begin{gather*}
|
||||
P_X(k) = \frac{\lambda^k}{k!}e^{-\lambda} \\[2mm]
|
||||
\phi_X(s) = \text{exp}\left(\lambda (e^{js} -1)\right)
|
||||
\end{gather*}
|
||||
\vspace*{-2mm}
|
||||
\begin{align*}
|
||||
E(X) &= \lambda\\
|
||||
V(X) &= \lambda
|
||||
\end{align*}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Zusammenfassung}
|
||||
|
||||
\begin{columns}[t]
|
||||
\column{\kitthreecolumns}
|
||||
\begin{greenblock}{Poisson Verteilung}
|
||||
\begin{greenblock}{Poisson-Verteilung}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
X \sim \text{Poisson}(\lambda) \\
|
||||
P_X(k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!}
|
||||
X \sim \text{Poisson}(\lambda) \\[3mm]
|
||||
P_X(k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!} \\[4mm]
|
||||
\phi_X(s) = \text{exp}\left(\lambda (e^{js} -1)\right)
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\begin{greenblock}{Binomialentwicklung}
|
||||
@ -116,17 +168,17 @@
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{greenblock}{Faltungssatz}
|
||||
\begin{greenblock}{Faltungssatz (diskrete ZV)}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
Z = X + Y \\
|
||||
Z = X + Y, \hspace{10mm}X,Y \text{ unabhängig} \\[3mm]
|
||||
P_Z(n) = \nsum_{k=0}^{n} P_X(k)P_Y(n-k)
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\begin{greenblock}{Charakteristische Funktion einer Summe von ZVs}
|
||||
\begin{greenblock}{Charakteristische Funktion einer Summe von ZV}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
Z = X + Y \\
|
||||
Z = X + Y, \hspace{10mm}X,Y \text{ unabhängig} \\[3mm]
|
||||
\phi_Z(s) = \phi_X(s) \cdot \phi_Y(s)
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
@ -235,11 +287,31 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Theorie Wiederholung}
|
||||
|
||||
% TODO:
|
||||
\begin{frame}
|
||||
\frametitle{Korrelationskoeffizient}
|
||||
|
||||
\begin{itemize}
|
||||
\item Korrelation
|
||||
\item Kovarianz
|
||||
\item Korrelationskoeffizient
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Mehrdimensionale Zufallsvariablen}
|
||||
|
||||
\begin{itemize}
|
||||
\item Randdichte
|
||||
\item Transformationssatz (betonen, dass h1, h2 eineindeutig
|
||||
sein müssen; Bild von Folie 85)
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Zusammenfassung}
|
||||
|
||||
\vspace*{-10mm}
|
||||
|
||||
\begin{columns}[t]
|
||||
\column{\kittwocolumns}
|
||||
\begin{greenblock}{Korrelationskoeffizient}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user