Add summary slide for exercise 1
This commit is contained in:
parent
876bbad136
commit
8eb3a6378f
@ -96,7 +96,42 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Theorie Wiederholung}
|
||||
|
||||
% TODO:
|
||||
\begin{frame}
|
||||
\frametitle{Zusammenfassung}
|
||||
|
||||
\begin{columns}[t]
|
||||
\column{\kitthreecolumns}
|
||||
\begin{greenblock}{Poisson Verteilung}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
X \sim \text{Poisson}(\lambda) \\
|
||||
P_X(k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!}
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\begin{greenblock}{Binomialentwicklung}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
\nsum_{k=0}^{n} \binom{n}{k}a^k b^{n-k} = (a+b)^n, \hspace{15mm}
|
||||
\binom{n}{k} = \frac{n!}{(n-k!)k!}
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{greenblock}{Faltungssatz}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
Z = X + Y \\
|
||||
P_Z(n) = \nsum_{k=0}^{n} P_X(k)P_Y(n-k)
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\begin{greenblock}{Charakteristische Funktion einer Summe von ZVs}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
Z = X + Y \\
|
||||
\phi_Z(s) = \phi_X(s) \cdot \phi_Y(s)
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Aufgabe}
|
||||
@ -390,50 +425,50 @@
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
view={20}{30},
|
||||
xlabel=$x$, ylabel=$y$, zlabel={$f_{X,Y}(x,y)$},
|
||||
xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=2,
|
||||
xtick={0,0.5,1},ytick={0,0.5,1},ztick={0,1,2},
|
||||
point meta min=0, point meta max=2,
|
||||
declare function={cutoff(\x) = 0.3/\x;},
|
||||
legend,
|
||||
]
|
||||
\addplot3[
|
||||
surf, shader=interp,
|
||||
samples=40,
|
||||
domain=0:1, y domain=0:1
|
||||
] (
|
||||
x,
|
||||
{y * min(1, cutoff(x))},
|
||||
{x + (y * min(1, cutoff(x)))}
|
||||
);
|
||||
\addlegendentry{$x\cdot y \le z$}
|
||||
|
||||
\addplot3[
|
||||
surf, shader=interp,
|
||||
samples=40,
|
||||
domain=0.3:1, y domain=0:1,
|
||||
fill=gray,
|
||||
draw=none,
|
||||
point meta=1.1,
|
||||
colormap name=cividis,
|
||||
] (
|
||||
x,
|
||||
{cutoff(x) + y*(1 - cutoff(x))},
|
||||
{x + (cutoff(x) + y*(1 - cutoff(x)))}
|
||||
);
|
||||
|
||||
\addplot3[
|
||||
mesh,
|
||||
samples=15,
|
||||
domain=0:1, y domain=0:1,
|
||||
draw=black,
|
||||
opacity=0.3
|
||||
] {x + y};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
% \begin{tikzpicture}
|
||||
% \begin{axis}[
|
||||
% view={20}{30},
|
||||
% xlabel=$x$, ylabel=$y$, zlabel={$f_{X,Y}(x,y)$},
|
||||
% xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=2,
|
||||
% xtick={0,0.5,1},ytick={0,0.5,1},ztick={0,1,2},
|
||||
% point meta min=0, point meta max=2,
|
||||
% declare function={cutoff(\x) = 0.3/\x;},
|
||||
% legend,
|
||||
% ]
|
||||
% \addplot3[
|
||||
% surf, shader=interp,
|
||||
% samples=40,
|
||||
% domain=0:1, y domain=0:1
|
||||
% ] (
|
||||
% x,
|
||||
% {y * min(1, cutoff(x))},
|
||||
% {x + (y * min(1, cutoff(x)))}
|
||||
% );
|
||||
% \addlegendentry{$x\cdot y \le z$}
|
||||
%
|
||||
% \addplot3[
|
||||
% surf, shader=interp,
|
||||
% samples=40,
|
||||
% domain=0.3:1, y domain=0:1,
|
||||
% fill=gray,
|
||||
% draw=none,
|
||||
% point meta=1.1,
|
||||
% colormap name=cividis,
|
||||
% ] (
|
||||
% x,
|
||||
% {cutoff(x) + y*(1 - cutoff(x))},
|
||||
% {x + (cutoff(x) + y*(1 - cutoff(x)))}
|
||||
% );
|
||||
%
|
||||
% \addplot3[
|
||||
% mesh,
|
||||
% samples=15,
|
||||
% domain=0:1, y domain=0:1,
|
||||
% draw=black,
|
||||
% opacity=0.3
|
||||
% ] {x + y};
|
||||
% \end{axis}
|
||||
% \end{tikzpicture}
|
||||
\end{figure}
|
||||
\end{minipage}%
|
||||
\begin{minipage}{0.58\textwidth}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user