Compare commits
2 Commits
d7725a0186
...
dcd018c236
| Author | SHA1 | Date | |
|---|---|---|---|
| dcd018c236 | |||
| 7e67ee3792 |
229
src/2026-01-16/presentation.tex
Normal file
229
src/2026-01-16/presentation.tex
Normal file
@ -0,0 +1,229 @@
|
||||
\ifdefined\ishandout
|
||||
\documentclass[de, handout]{CELbeamer}
|
||||
\else
|
||||
\documentclass[de]{CELbeamer}
|
||||
\fi
|
||||
|
||||
%
|
||||
%
|
||||
% CEL Template
|
||||
%
|
||||
%
|
||||
|
||||
\newcommand{\templates}{preambles}
|
||||
\input{\templates/packages.tex}
|
||||
\input{\templates/macros.tex}
|
||||
|
||||
\grouplogo{CEL_logo.pdf}
|
||||
|
||||
\groupname{Communication Engineering Lab (CEL)}
|
||||
\groupnamewidth{80mm}
|
||||
|
||||
\fundinglogos{}
|
||||
|
||||
%
|
||||
%
|
||||
% Document setup
|
||||
%
|
||||
%
|
||||
|
||||
\usepackage{tikz}
|
||||
\usepackage{tikz-3dplot}
|
||||
\usetikzlibrary{spy, external, intersections, positioning}
|
||||
%\tikzexternalize[prefix=build/]
|
||||
|
||||
\usepackage{pgfplots}
|
||||
\pgfplotsset{compat=newest}
|
||||
\usepgfplotslibrary{fillbetween}
|
||||
|
||||
\usepackage{enumerate}
|
||||
\usepackage{listings}
|
||||
\usepackage{subcaption}
|
||||
\usepackage{bbm}
|
||||
\usepackage{multirow}
|
||||
\usepackage{xcolor}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{calc}
|
||||
|
||||
\title{WT Tutorium 5}
|
||||
\author[Tsouchlos]{Andreas Tsouchlos}
|
||||
\date[]{16. Januar 2026}
|
||||
|
||||
%
|
||||
%
|
||||
% Custom commands
|
||||
%
|
||||
%
|
||||
|
||||
\input{lib/latex-common/common.tex}
|
||||
\pgfplotsset{colorscheme/rocket}
|
||||
|
||||
\newcommand{\res}{src/2026-01-16/res}
|
||||
|
||||
\newlength{\depthofsumsign}
|
||||
\setlength{\depthofsumsign}{\depthof{$\sum$}}
|
||||
\newlength{\totalheightofsumsign}
|
||||
\newlength{\heightanddepthofargument}
|
||||
\newcommand{\nsum}[1][1.4]{
|
||||
\mathop{
|
||||
\raisebox
|
||||
{-#1\depthofsumsign+1\depthofsumsign}
|
||||
{\scalebox
|
||||
{#1}
|
||||
{$\displaystyle\sum$}%
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
% \tikzstyle{every node}=[font=\small]
|
||||
% \captionsetup[sub]{font=small}
|
||||
|
||||
%
|
||||
%
|
||||
% Document body
|
||||
%
|
||||
%
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{frame}[title white vertical, picture=images/IMG_7801-cut]
|
||||
\titlepage
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Aufgabe 1}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Theorie Wiederholung}
|
||||
|
||||
% TODO:
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Aufgabe}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Aufgabe 1:\\Faltungssatz \& Charakteristische Funktion}
|
||||
|
||||
Es seien zwei unabhängige poissonverteilte Zufallsvariablen $X$ und
|
||||
$Y$ mit den Parametern $\lambda_1$
|
||||
bzw. $\lambda_2$ gegeben.
|
||||
|
||||
% tex-fmt: off
|
||||
\begin{enumerate}[a{)}]
|
||||
\item Zeigen Sie, dass die Summe $Z = X + Y$ ebenfalls
|
||||
Poisson-verteilt ist mit dem Parameter $\lambda = \lambda_1 +
|
||||
\lambda_2$. Nutzen Sie dazu den Faltungssatz für die Addition
|
||||
zweier Zufallsvariablen.
|
||||
\item Erbringen Sie denselben Nachweis mithilfe der
|
||||
charakteristischen Funktion.
|
||||
\end{enumerate}
|
||||
% tex-fmt: on
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]
|
||||
\frametitle{Aufgabe 1:\\Faltungssatz \& Charakteristische Funktion}
|
||||
|
||||
Es seien zwei unabhängige poissonverteilte Zufallsvariablen $X$ und
|
||||
$Y$ mit den Parametern $\lambda_1$
|
||||
bzw. $\lambda_2$ gegeben.
|
||||
|
||||
% tex-fmt: off
|
||||
\begin{enumerate}[a{)}]
|
||||
\item Zeigen Sie, dass die Summe $Z = X + Y$ ebenfalls
|
||||
Poisson-verteilt ist mit dem Parameter $\lambda = \lambda_1 +
|
||||
\lambda_2$. Nutzen Sie dazu den Faltungssatz für die Addition
|
||||
zweier Zufallsvariablen.
|
||||
\pause\begin{gather*}
|
||||
X \sim \text{Poisson}(\lambda_1) \hspace{3mm}
|
||||
\Leftrightarrow \hspace{3mm} P_X(k)
|
||||
= \frac{\lambda_1^k \cdot e^{-\lambda_1}}{k!} \hspace{30mm}
|
||||
Y \sim \text{Poisson}(\lambda_2) \hspace{3mm}
|
||||
\Leftrightarrow \hspace{3mm} P_Y(k)
|
||||
= \frac{\lambda_2^k \cdot e^{-\lambda_2}}{k!}
|
||||
\end{gather*}
|
||||
\vspace{2mm}
|
||||
\pause\begin{align*}
|
||||
P_Z(n) &= P_{X+Y}(n) = \nsum_{k=0}^{n} P_X(k)P_Y(n-k)
|
||||
= \nsum_{k=0}^{n} \frac{\lambda_1^k \cdot e^{-\lambda_1}}{k!}
|
||||
\cdot \frac{\lambda_2^{n-k} \cdot e^{-\lambda_2}}{(n-k)!} \\[3mm]
|
||||
&= e^{-(\lambda_1 + \lambda_2)} \nsum_{k=0}^{n}
|
||||
\frac{1}{k! (n-k)!} \lambda_1^k \lambda_2^{n-k} \\[3mm]
|
||||
&= \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} \nsum_{k=0}^{n}
|
||||
\frac{n!}{k! (n-k)!} \lambda_1^k \lambda_2^{n-k} \\[3mm]
|
||||
&= \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} \nsum_{k=0}^{n}
|
||||
\binom{n}{k} \lambda_1^k \lambda_2^{n-k}
|
||||
= \frac{e^{-(\lambda_1 + \lambda_2)}}{n!}
|
||||
( \lambda_1 + \lambda_2 )^n
|
||||
=: \frac{\lambda^n e^{-\lambda}}{n!}
|
||||
\end{align*}
|
||||
\pause\item Erbringen Sie denselben Nachweis mithilfe der
|
||||
charakteristischen Funktion.
|
||||
\pause\begin{align*}
|
||||
% TODO: Write solution
|
||||
\end{align*}
|
||||
\end{enumerate}
|
||||
% tex-fmt: on
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Aufgabe 2}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Theorie Wiederholung}
|
||||
|
||||
% TODO:
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Aufgabe}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Aufgabe 2: Transformationssatz für 2D-Dichten}
|
||||
|
||||
Die Zufallsvariable $(X; Y)^T$ habe die gemeinsame
|
||||
Wahrscheinlichkeitsdichte $f (x, y) = x + y$ für
|
||||
$x, y \in (0; 1]$ und null sonst.
|
||||
|
||||
% tex-fmt: off
|
||||
\begin{enumerate}[a{)}]
|
||||
\item Berechnen Sie die Dichte von $(Z = X \cdot Y)$ mithilfe des
|
||||
Transformationssatzes.
|
||||
\item Verwenden Sie einen alternativen Ansatz zur Berechnung der
|
||||
Dichte. Hinweis: Beginnen Sie mit $P (Z \le z) = \ldots$
|
||||
\item Berechnen Sie den Korrelationskoeffizienten $\rho_{XY}$ .
|
||||
\end{enumerate}
|
||||
% tex-fmt: on
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Aufgabe 2: Transformationssatz für 2D-Dichten}
|
||||
|
||||
Die Zufallsvariable $(X; Y)^T$ habe die gemeinsame
|
||||
Wahrscheinlichkeitsdichte $f (x, y) = x + y$ für
|
||||
$x, y \in (0; 1]$ und null sonst.
|
||||
|
||||
% tex-fmt: off
|
||||
\begin{enumerate}[a{)}]
|
||||
\item Berechnen Sie die Dichte von $(Z = X \cdot Y)$ mithilfe des
|
||||
Transformationssatzes.
|
||||
\pause\begin{align*}
|
||||
f(x) = \displaystyle\int_{-\infty}^{\infty} f(x,y) dy
|
||||
= x + 0{,}5 \\
|
||||
f(y) = \displaystyle\int_{-\infty}^{\infty} f(x,y) dx
|
||||
= y + 0{,}5
|
||||
\end{align*}
|
||||
\pause \item Verwenden Sie einen alternativen Ansatz zur Berechnung der
|
||||
Dichte. Hinweis: Beginnen Sie mit $P (Z \le z) = \ldots$
|
||||
\pause\begin{align*}
|
||||
\end{align*}
|
||||
\pause \item Berechnen Sie den Korrelationskoeffizienten $\rho_{XY}$ .
|
||||
\pause\begin{align*}
|
||||
\end{align*}
|
||||
\end{enumerate}
|
||||
% tex-fmt: on
|
||||
|
||||
\end{frame}
|
||||
|
||||
\end{document}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user