Add solutions for exercise 1

This commit is contained in:
Andreas Tsouchlos 2025-11-01 23:32:41 +01:00
parent f0c3f6a13e
commit dcfdb0ba9e

View File

@ -232,7 +232,7 @@
können als unabhängig angenommen werden und führen jeweils mit
der Wahrscheinlichkeit
$p = 0,2$ zu einem Strafzettel. Die diskrete Zufallsvariable $R :
\Omega \rightarrow R$ beschreibt die Anzahl der
\Omega \rightarrow \mathbb{R}$ beschreibt die Anzahl der
Strafzettel in $N = 6$ Kontrollen.
% tex-fmt: off
@ -276,6 +276,154 @@
% tex-fmt: on
\end{frame}
\begin{frame}
\frametitle{Aufgabe 1: Diskrete Verteilungen}
\vspace*{-16mm}
Eine Polizistin führt $N = 6$ Radarkontrollen auf einer
Landstraße durch. Die Radarkontrollen
können als unabhängig angenommen werden und führen jeweils mit
der Wahrscheinlichkeit
$p = 0,2$ zu einem Strafzettel. Die diskrete Zufallsvariable $R :
\Omega \rightarrow \mathbb{R}$ beschreibt die Anzahl der
Strafzettel in $N = 6$ Kontrollen.
% tex-fmt: off
\begin{enumerate}[a{)}]
\item Geben Sie den Ergebnisraum $\Omega$ der diskreten Zufallsvariablen $R$ an
und bestimmen Sie deren Erwartungswert $E(R)$.
\pause\begin{gather*}
\Omega = \mleft\{ 0, 1\mright\}^6 \\
R \sim \text{Bin}(N=6, p=0.2)\hspace{5mm} \Rightarrow \hspace{5mm} E(R) = Np = 1.2
\end{gather*}
\vspace*{-10mm}\pause \item Wie groß ist die Wahrscheinlichkeit dafür, dass es bei $6$
Kontrollen genau $3$ Strafzettel gibt?
\pause \begin{gather*}
P(R=3) = \binom{N}{3}p^3 (1-p)^{N-3} = \binom{6}{3} 0.2^3 0.8^3 \approx 0.0819
\end{gather*}
\vspace*{-6mm}\pause \item Skizzieren Sie die Verteilungsfunktion $F_R(r)$ der
Zufallsvariablen $R$.
\end{enumerate}
% tex-fmt: on
\vspace*{2mm}
\pause
\begin{columns}
\column{\kitthreecolumns}
\begin{gather*}
F_R(r) = \sum_{\widetilde{r} \le r}
\binom{N}{\widetilde{r}}p^{\widetilde{r}} (1-p)^{N-\widetilde{r}}
\end{gather*}
\begin{table}
\begin{tabular}{c|ccccccc}
$r$ & $0$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ \\ \hline
$F_R(r)$ & 0.262 & 0.655 & 0.901 & 0.983 & 0.998 & 0.999 & 1
\end{tabular}
\end{table}
\column{\kitthreecolumns}
\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{axis}[
xmin=0,xmax=6,
ymin=-0.2,ymax=1.2,
xlabel=$r$,
ylabel=$F_R(r)$,
width=12cm,
height=5cm,
]
\addplot+[mark=none, line width=1pt]
coordinates
{
(0,0.262)
(1,0.262)
(1,0.655)
(2,0.655)
(2,0.901)
(3,0.901)
(3,0.983)
(4,0.983)
(4,0.998)
(5,0.998)
(5,0.999)
(6,0.999)
(6,1)
};
\end{axis}
\end{tikzpicture}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Aufgabe 1: Diskrete Verteilungen}
\vspace*{-16mm}
Ein Autofahrer muss jeden Tag auf seinem Arbeitsweg über die
Landstraße und über die Autobahn fahren. Die Wahrscheinlichkeit
dafür, dass der Autofahrer auf der Landstraße bzw. auf der
Autobahn zu schnell fährt und einen Strafzettel bekommt, liegt
bei $p_\text{L} = 0,2$ bzw. bei $p_\text{A} = 0,3$.
\vspace*{2mm}
\textbf{Hinweis}: Es wird nur der einfache Weg (Hinweg) betrachtet.
% tex-fmt: off
\begin{enumerate}[a{)}]
\setcounter{enumi}{2}
\item Wie groß ist die Wahrscheinlichkeit dafür, dass der Autofahrer
an einem Tag $0$, $1$ oder $2$ Strafzettel bekommt?
\pause\begin{gather*}
R := A + L
\end{gather*}%
\vspace*{-14mm}%
\begin{align*}
P(R = 0) &= P(A = 0 \text{ und } L = 0) &&\hspace{-24mm}= p_A\cdot p_L &&\hspace{-24mm}= 0.56 \\
P(R = 1) &= P(A=1 \text{ und } L=0) + P(A=0 \text{ und } L=1) &&\hspace{-24mm}= p_A \cdot (1-p_L) + (1-p_A)\cdot p_L &&\hspace{-24mm}= 0.38 \\
P(R = 2) &= P(A=1 \text{ und } L=1) &&\hspace{-24mm}= (1-p_A)(1-p_L) &&\hspace{-24mm}= 0.06
\end{align*}
\vspace*{-10mm}\pause \item Der Autofahrer fährt an $200$ unabhängigen Tagen im Jahr über
seinen Arbeitsweg zur Arbeit. Wie viele Strafzettel sammelt der
Autofahrer innerhalb eines Jahres?
\end{enumerate}
% tex-fmt: on
\vspace*{-6mm}
\pause
\begin{minipage}{0.48\textwidth}
\centering
\begin{align*}
E\left(\sum_{n=1}^{200} R_n\right) &= \sum_{n=1}^{200}
E\left(R_n\right) = \sum_{n=1}^{200} \left[1\cdot0.38 +
2\cdot 0.06\right]\\[2mm]
&= 200\cdot 0.5 = 100
\end{align*}
\end{minipage}%
\begin{minipage}{0.06\textwidth}
\centering
\begin{tikzpicture}
\draw[line width=1pt] (0,0) -- (0,4cm);
\end{tikzpicture}
\end{minipage}%
\begin{minipage}{0.48\textwidth}
\centering
\begin{align*}
E\left(\sum_{n=1}^{200} R_n\right) &=
E\Big(\overbrace{\sum_{n=1}^{200} A_n}^{\sim
\text{Bin}(N=200,p=0.3)} + \overbrace{\sum_{n=1}^{200}
L_n}^{\sim \text{Bin}(N=200,p=0.2)}\Big)\\[2mm]
&= E\left(\sum_{n=1}^{200} A_n\right) +
E\left(\sum_{n=1}^{200} L_n\right) \\[2mm]
&= 200\cdot 0.3 + 200 \cdot 0.2 = 100
\end{align*}
\end{minipage}
\end{frame}
% \begin{frame}
%
% \frametitle{Aufgabe 1: Bedingte Wahrscheinlichkeiten \\\& Bayes}