Finish Tutorium 1

This commit is contained in:
Andreas Tsouchlos 2025-10-25 22:43:25 +02:00
parent 35bbe0a501
commit c9e1bcc5ea

View File

@ -292,50 +292,136 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Theorie Wiederholung}
% TODO: Replace slide content with relevant stuff
\begin{frame}
\frametitle{Theorie Wiederholung II}
\frametitle{Kombinatorik}
\vspace*{-18mm}
\begin{itemize}
\item Potenzmenge
\vspace*{-2mm}
\begin{columns}
\column{\kitfourcolumns}
\begin{align*}
\mathcal{P}\mleft( \Omega \mright) = \mleft\{ A:
A \subseteq \Omega \mright\} \hspace{10mm}
\left(\text{``Menge aller
Teilmengen von $\Omega$''}\right)
\end{align*}
\column{\kittwocolumns}
\begin{lightgrayhighlightbox}
Beispiel
\begin{gather*}
f_X(x) := \frac{d}{dx} F_X(x) \\
P(X \le x) = F_X(x) = \int_{-\infty}^{x} f_X(t) dt \\
E(X) = \int_{-\infty}^{\infty} x\cdot f_X(x) dx
\end{gather*}
\begin{figure}
\centering
\begin{subfigure}[c]{0.5\textwidth}
\centering
\Omega = \{ A, B, C \}
\end{gather*}%
\vspace*{-15mm}%
\begin{align*}
\mathcal{P}(\Omega) = \{ &\emptyset,
\mleft\{ A \mright\}, \mleft\{ B \mright\},
\mleft\{ C \mright\}, \mleft\{ A, B \mright\},\\
&\mleft\{ A, C \mright\},
\mleft\{ B, C \mright\}, \mleft\{ A, B, C \mright\} \}
\end{align*}%
\vspace*{-14mm}%
\end{lightgrayhighlightbox}
\end{columns}
\vspace*{-3mm}
\item \pause Variationen und Kombinationen
\setlength\extrarowheight{2mm}
\begin{table}
\begin{tabular}{r||l|l}
& Mit Zurücklegen & Ohne Zurücklegen
\\\hline\hline Mit Reihenfolge
(\textit{Variationen}) & $\lvert
\widetilde{V}_N^{(K)} \rvert = N^K$ & $\lvert
V_N^{(K)}\rvert = \frac{N!}{(N-K)!} $ \\\hline
Ohne Reihenfolge (\textit{Kombinationen}) &
$\lvert \widetilde{C}_N^{(K)} \rvert =
\binom{N+K-1}{K} $ & $\lvert C_N^{(K)} \rvert
= \binom{N}{K} $
\end{tabular}
\end{table}
\item \pause Permutationen
\begin{columns}
\column{\kitfourcolumns}
\begin{gather*}
\text{Normalverteilung:} \hspace{8mm}
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}
e^{-\frac{(x - \mu)^2}{2\sigma^2}}
\Pi_N = \mleft\{ \mleft( a_1, \ldots, a_N
\mright) \in \Omega : a_i \neq a_j, i \neq j
\mright\}\\
\begin{array}{r}
\text{Alle Elemente von $\Omega$ unterscheidbar:} \\
\text{Jeweils $L_1, L_2, \ldots, L_M$ der Elemente
sind gleich:}
\end{array}
\hspace{5mm}
\begin{array}{rl}
\lvert \Pi_N \rvert &= N! \\
\lvert \Pi_N^{(L_1,
L_2, \ldots, L_M)} \rvert &=
\frac{N!}{L_1!L_2!\cdots L_M!}
\end{array}
\end{gather*}
\end{subfigure}%
\begin{subfigure}[c]{0.4\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
domain=-4:4,
samples=100,
width=\textwidth,
height=0.5\textwidth,
ticks=none,
xlabel={$x$},
ylabel={$f_X(x)$}
]
\addplot+[mark=none, line width=1pt] {exp(-x^2)};
\end{axis}
\end{tikzpicture}
\end{subfigure}
\end{figure}
\column{\kittwocolumns}
\begin{lightgrayhighlightbox}
Beispiel:
\begin{gather*}
\Omega = {A, B, C}\\
\Pi_N = \{ (A,B,C), (A,C,B), (B,A,C),\\
(B,C,A), (C,A,B), (C,B,A)\}
\end{gather*}
\vspace*{-14mm}%
\end{lightgrayhighlightbox}
\end{columns}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Zusammenfassung}
\begin{columns}
\column{\kitthreecolumns}
\begin{greenblock}{Potenzmenge}
\vspace*{-6mm}
\begin{gather*}
\mathcal{P}\mleft( \Omega \mright) = \mleft\{ A:
A \subseteq \Omega \mright\}
\end{gather*}
\end{greenblock}
\column{\kitthreecolumns}
\begin{greenblock}{Permutationen}
\vspace*{-6mm}
\begin{align*}
\lvert \Pi_N \rvert &= N! \\
\lvert \Pi_N^{(L_1, L_2, \ldots, L_M)} \rvert &=
\frac{N!}{L_1!L_2!\cdots L_M!}
\end{align*}
\end{greenblock}
\end{columns}
\begin{columns}
\column{\kitonecolumn}
\column{\kitfourcolumns}
\begin{greenblock}{Variationen \& Kombinationen }
\begin{table}
\begin{tabular}{r||l|l}
& Mit Zurücklegen & Ohne Zurücklegen
\\\hline\hline Mit Reihenfolge
(\textit{Variationen}) & $\lvert
\widetilde{V}_N^{(K)} \rvert = N^K$ & $\lvert
V_N^{(K)}\rvert = \frac{N!}{(N-K)!} $ \\\hline
Ohne Reihenfolge (\textit{Kombinationen}) &
$\lvert \widetilde{C}_N^{(K)} \rvert =
\binom{N+K-1}{K} $ & $\lvert C_N^{(K)} \rvert
= \binom{N}{K} $
\end{tabular}
\end{table}
\end{greenblock}
\column{\kitonecolumn}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Aufgabe}
% TODO: Replace slide content with relevant stuff
\begin{frame}
\frametitle{Aufgabe 2: Variationen \& Permutationen}
@ -367,48 +453,72 @@
\end{frame}
\begin{frame}
\frametitle{Aufgabe 2: Variationen \& Permutationen}
Aufgabe 2: Variationen \& Permutationen
Ein Burgerrestaurant bietet verschiedene Burger mit den
Zutaten Salat
(S), Käse (K), Tomate (T)
und Patty (P) an. Diese werden zufällig für die Zubereitung eines
Burgers ausgewählt.
% tex-fmt: off
\begin{enumerate}[a{)}]
\item Die Ergebnismenge sei $\Omega = \{S, K, T, P\}$. Wie lautet die
Potenzmenge $P(\Omega)$?\pause
\begin{align*}
\mathcal{P}(\Omega) = \{ &\emptyset, \mleft\{ S \mright\}, \mleft\{ K \mright\}, \mleft\{ T \mright\}, \mleft\{ P \mright\},\\
&\mleft\{ S, K \mright\}, \mleft\{ S, T \mright\}, \mleft\{ S, P \mright\}, \mleft\{ K, T \mright\}, \mleft\{ K,P \mright\}, \mleft\{ T, P \mright\}, \\
&\mleft\{ S, K, T \mright\}, \mleft\{ S, K, P \mright\}, \mleft\{ S, T, P \mright\}, \mleft\{ K, T, P \mright\}, \mleft\{ S, K, T, P \mright\}\}
\end{align*}%
\item \pause Für einen normalen Burger werden 3 der 4 möglichen Zutaten
ausgewählt und in einer
bestimmten Reihenfolge auf das Burgerbrötchen gelegt. Wie viele
verschiedene normale
Burger gibt es?\pause
\begin{gather*}
\lvert V_N^{(K)} \rvert = \frac{4!}{1!} = 24
\end{gather*}
\end{enumerate}
% tex-fmt: on
\end{frame}
\begin{frame}
\frametitle{Aufgabe 2: Variationen \& Permutationen}
Aufgabe 2: Variationen \& Permutationen
Ein Burgerrestaurant bietet verschiedene Burger mit den
Zutaten Salat
(S), Käse (K), Tomate (T)
und Patty (P) an. Diese werden zufällig für die Zubereitung eines
Burgers ausgewählt.
% tex-fmt: off
\begin{enumerate}[a{)}]
\setcounter{enumi}{2}
\item Ein Burger ``Spezial'' besteht ebenfalls aus 3 Zutaten. Jedoch
können Tomate und Salat
doppelt vorkommen. Wie viele verschiedene Burger „Spezial“ gibt es?\pause
\begin{align*}
n_\text{Burger} &= n_\text{Burger,alle Unterschiedlich} + n_{\text{Burger,2}\times\text{Salat}} + n_{\text{Burger,2}\times\text{Tomate}} \\
&= 24 + 3\cdot 3 + 3\cdot 3 = 42
\end{align*}
\item \pause Der Burger „Jumbo“ enthält die folgende Menge an Zutaten: $\{S, S,
T, T, K, K, K, P, P, P\}$
die alle verwendet werden. Wie viele mögliche Belegungen des Burgers
``Jumbo'' gibt es?\pause
\begin{gather*}
\lvert \Pi_N^{L_1,L_2,L_3,L_4} \rvert = \frac{10!}{2!2!3!3!} = 25200
\end{gather*}
\end{enumerate}
% tex-fmt: on
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Zusammenfassung}
% TODO: Replace slide content with relevant stuff
\begin{frame}
\frametitle{Zusammenfassung}
\begin{gather*}
f_X(x) := \frac{d}{dx} F_X(x) \\
P(X \le x) = F_X(x) = \int_{-\infty}^{x} f_X(t) dt \\
E(X) = \int_{-\infty}^{\infty} x\cdot f_X(x) dx
\end{gather*}
\begin{figure}
\centering
\begin{subfigure}[c]{0.5\textwidth}
\centering
\begin{gather*}
\text{Normalverteilung:} \hspace{8mm}
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}
e^{-\frac{(x - \mu)^2}{2\sigma^2}}
\end{gather*}
\end{subfigure}%
\begin{subfigure}[c]{0.4\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
domain=-4:4,
samples=100,
width=\textwidth,
height=0.5\textwidth,
ticks=none,
xlabel={$x$},
ylabel={$f_X(x)$}
]
\addplot+[mark=none, line width=1pt] {exp(-x^2)};
\end{axis}
\end{tikzpicture}
\end{subfigure}
\end{figure}
\end{frame}
% TODO: Do we even want this section?
\end{document}