Finish Tutorium 1
This commit is contained in:
parent
35bbe0a501
commit
c9e1bcc5ea
@ -142,108 +142,108 @@
|
||||
\item Laplace'sches Zufallsexperiment
|
||||
\begin{gather*}
|
||||
\text{Voraussetzungen: }\hspace{5mm} \left\{
|
||||
\begin{array}{l}
|
||||
\lvert\Omega\rvert \text{ endlich}\\
|
||||
P(\omega_i) = \frac{1}{\lvert\Omega\rvert}
|
||||
\end{array}
|
||||
\right.\\[1em]
|
||||
P(A) = \frac{\lvert A \rvert}{\lvert \Omega \rvert} =
|
||||
\frac{\text{Anzahl ``günstiger''
|
||||
Möglichkeiten}}{\text{Anzahl Möglichkeiten}}
|
||||
\end{gather*}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
\begin{array}{l}
|
||||
\lvert\Omega\rvert \text{ endlich}\\
|
||||
P(\omega_i) = \frac{1}{\lvert\Omega\rvert}
|
||||
\end{array}
|
||||
\right.\\[1em]
|
||||
P(A) = \frac{\lvert A \rvert}{\lvert \Omega \rvert} =
|
||||
\frac{\text{Anzahl ``günstiger''
|
||||
Möglichkeiten}}{\text{Anzahl Möglichkeiten}}
|
||||
\end{gather*}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Kombinationen und Hypergeometrische\\ Verteilung}
|
||||
\begin{itemize}
|
||||
\item Kombinationen: Ziehen ohne zurücklegen, ohne
|
||||
Betrachtung der Reihenfolge
|
||||
\vspace*{5mm}
|
||||
\begin{columns}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{gather*}
|
||||
\lvert C_N^{(K)} \rvert = \binom{N}{K} =
|
||||
\frac{N!}{(N-K)!K!}
|
||||
\end{gather*}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{lightgrayhighlightbox}
|
||||
Beispiel: Wie viele mögliche Ergebnisse gibt
|
||||
es beim Lotto ``6 aus 49''?
|
||||
\vspace*{0mm}
|
||||
\begin{align*}
|
||||
\begin{array}{c}
|
||||
N = 49 \\
|
||||
K = 6
|
||||
\end{array} \hspace{5mm} \rightarrow
|
||||
\hspace{5mm} \binom{49}{6} = 13983816
|
||||
\end{align*}
|
||||
\vspace*{-8mm}
|
||||
\end{lightgrayhighlightbox}
|
||||
\end{columns}
|
||||
\pause
|
||||
\item Hypergeometrische Verteilung
|
||||
\begin{columns}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{gather*}
|
||||
P_r = \frac{\binom{R}{r}\binom{N-R}{n-r}}{\binom{N}{n}}
|
||||
\end{gather*}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{lightgrayhighlightbox}
|
||||
Beispiel: In einer Urne sind N Kugeln, davon
|
||||
R rot. Wie groß ist die Wahrscheinlichkeit
|
||||
beim ziehen von n Kugeln (ohne Zurücklegen)
|
||||
genau r rote zu erwischen?
|
||||
\end{lightgrayhighlightbox}
|
||||
\end{columns}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Zusammenfassung}
|
||||
\begin{columns}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{greenblock}{Laplace'sches Zufallsexperiment}%
|
||||
\vspace*{-6mm}
|
||||
\begin{frame}{Kombinationen und Hypergeometrische\\ Verteilung}
|
||||
\begin{itemize}
|
||||
\item Kombinationen: Ziehen ohne zurücklegen, ohne
|
||||
Betrachtung der Reihenfolge
|
||||
\vspace*{5mm}
|
||||
\begin{columns}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{gather*}
|
||||
P(A) = \frac{\lvert A \rvert}{\lvert \Omega \rvert} =
|
||||
\frac{\text{Anzahl ``günstiger''
|
||||
Möglichkeiten}}{\text{Anzahl Möglichkeiten}}
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
|
||||
\column{\kitthreecolumns}
|
||||
\begin{greenblock}{Kombinationen}%
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
\lvert C_N^{(K)}\rvert = \binom{N}{K} =
|
||||
\lvert C_N^{(K)} \rvert = \binom{N}{K} =
|
||||
\frac{N!}{(N-K)!K!}
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\end{columns}
|
||||
|
||||
\begin{columns}
|
||||
\column{\kitonecolumn}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{greenblock}{Hypergeometrische Verteilung}%
|
||||
\vspace*{-6mm}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{lightgrayhighlightbox}
|
||||
Beispiel: Wie viele mögliche Ergebnisse gibt
|
||||
es beim Lotto ``6 aus 49''?
|
||||
\vspace*{0mm}
|
||||
\begin{align*}
|
||||
\begin{array}{c}
|
||||
N = 49 \\
|
||||
K = 6
|
||||
\end{array} \hspace{5mm} \rightarrow
|
||||
\hspace{5mm} \binom{49}{6} = 13983816
|
||||
\end{align*}
|
||||
\vspace*{-8mm}
|
||||
\end{lightgrayhighlightbox}
|
||||
\end{columns}
|
||||
\pause
|
||||
\item Hypergeometrische Verteilung
|
||||
\begin{columns}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{gather*}
|
||||
P_R = \frac{\binom{R}{r}\binom{N-R}{n-r}}{\binom{N}{n}}
|
||||
P_r = \frac{\binom{R}{r}\binom{N-R}{n-r}}{\binom{N}{n}}
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\column{\kitonecolumn}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{lightgrayhighlightbox}
|
||||
Beispiel: In einer Urne sind N Kugeln, davon
|
||||
R rot. Wie groß ist die Wahrscheinlichkeit
|
||||
beim ziehen von n Kugeln (ohne Zurücklegen)
|
||||
genau r rote zu erwischen?
|
||||
\end{lightgrayhighlightbox}
|
||||
\end{columns}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Aufgabe}
|
||||
\begin{frame}{Zusammenfassung}
|
||||
\begin{columns}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{greenblock}{Laplace'sches Zufallsexperiment}%
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
P(A) = \frac{\lvert A \rvert}{\lvert \Omega \rvert} =
|
||||
\frac{\text{Anzahl ``günstiger''
|
||||
Möglichkeiten}}{\text{Anzahl Möglichkeiten}}
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Aufgabe 1: Ergebnisraum \&
|
||||
Hypergeometrische\\ Verteilung}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{greenblock}{Kombinationen}%
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
\lvert C_N^{(K)}\rvert = \binom{N}{K} =
|
||||
\frac{N!}{(N-K)!K!}
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\end{columns}
|
||||
|
||||
Bei einem Kartenspiel erhält ein Spieler 5 Karten aus einem Deck
|
||||
von 52 Karten (bestehend aus
|
||||
13 Arten mit je 4 Farben). Wie groß ist die Wahrscheinlichkeit,
|
||||
dass der Spieler
|
||||
\begin{columns}
|
||||
\column{\kitonecolumn}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{greenblock}{Hypergeometrische Verteilung}%
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
P_R = \frac{\binom{R}{r}\binom{N-R}{n-r}}{\binom{N}{n}}
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\column{\kitonecolumn}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Aufgabe}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Aufgabe 1: Ergebnisraum \&
|
||||
Hypergeometrische\\ Verteilung}
|
||||
|
||||
Bei einem Kartenspiel erhält ein Spieler 5 Karten aus einem Deck
|
||||
von 52 Karten (bestehend aus
|
||||
13 Arten mit je 4 Farben). Wie groß ist die Wahrscheinlichkeit,
|
||||
dass der Spieler
|
||||
|
||||
% tex-fmt: off
|
||||
\begin{enumerate}[a{)}]
|
||||
@ -253,16 +253,16 @@
|
||||
\end{enumerate}
|
||||
% tex-fmt: on
|
||||
|
||||
\end{frame}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Aufgabe 1: Ergebnisraum \&
|
||||
Hypergeometrische\\ Verteilung}
|
||||
\begin{frame}
|
||||
\frametitle{Aufgabe 1: Ergebnisraum \&
|
||||
Hypergeometrische\\ Verteilung}
|
||||
|
||||
Bei einem Kartenspiel erhält ein Spieler 5 Karten aus einem Deck
|
||||
von 52 Karten (bestehend aus
|
||||
13 Arten mit je 4 Farben). Wie groß ist die Wahrscheinlichkeit,
|
||||
dass der Spieler
|
||||
Bei einem Kartenspiel erhält ein Spieler 5 Karten aus einem Deck
|
||||
von 52 Karten (bestehend aus
|
||||
13 Arten mit je 4 Farben). Wie groß ist die Wahrscheinlichkeit,
|
||||
dass der Spieler
|
||||
|
||||
% tex-fmt: off
|
||||
\begin{enumerate}[a{)}]
|
||||
@ -284,67 +284,153 @@
|
||||
\end{enumerate}
|
||||
% tex-fmt: on
|
||||
|
||||
\end{frame}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Aufgabe 2}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Theorie Wiederholung}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Aufgabe 2}
|
||||
|
||||
% TODO: Replace slide content with relevant stuff
|
||||
\begin{frame}
|
||||
\frametitle{Theorie Wiederholung II}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Theorie Wiederholung}
|
||||
|
||||
\begin{gather*}
|
||||
f_X(x) := \frac{d}{dx} F_X(x) \\
|
||||
P(X \le x) = F_X(x) = \int_{-\infty}^{x} f_X(t) dt \\
|
||||
E(X) = \int_{-\infty}^{\infty} x\cdot f_X(x) dx
|
||||
\end{gather*}
|
||||
\begin{frame}
|
||||
\frametitle{Kombinatorik}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\vspace*{-18mm}
|
||||
|
||||
\begin{subfigure}[c]{0.5\textwidth}
|
||||
\centering
|
||||
\begin{itemize}
|
||||
\item Potenzmenge
|
||||
\vspace*{-2mm}
|
||||
\begin{columns}
|
||||
\column{\kitfourcolumns}
|
||||
\begin{align*}
|
||||
\mathcal{P}\mleft( \Omega \mright) = \mleft\{ A:
|
||||
A \subseteq \Omega \mright\} \hspace{10mm}
|
||||
\left(\text{``Menge aller
|
||||
Teilmengen von $\Omega$''}\right)
|
||||
\end{align*}
|
||||
\column{\kittwocolumns}
|
||||
\begin{lightgrayhighlightbox}
|
||||
Beispiel
|
||||
\begin{gather*}
|
||||
\Omega = \{ A, B, C \}
|
||||
\end{gather*}%
|
||||
\vspace*{-15mm}%
|
||||
\begin{align*}
|
||||
\mathcal{P}(\Omega) = \{ &\emptyset,
|
||||
\mleft\{ A \mright\}, \mleft\{ B \mright\},
|
||||
\mleft\{ C \mright\}, \mleft\{ A, B \mright\},\\
|
||||
&\mleft\{ A, C \mright\},
|
||||
\mleft\{ B, C \mright\}, \mleft\{ A, B, C \mright\} \}
|
||||
\end{align*}%
|
||||
\vspace*{-14mm}%
|
||||
\end{lightgrayhighlightbox}
|
||||
\end{columns}
|
||||
\vspace*{-3mm}
|
||||
\item \pause Variationen und Kombinationen
|
||||
\setlength\extrarowheight{2mm}
|
||||
\begin{table}
|
||||
\begin{tabular}{r||l|l}
|
||||
& Mit Zurücklegen & Ohne Zurücklegen
|
||||
\\\hline\hline Mit Reihenfolge
|
||||
(\textit{Variationen}) & $\lvert
|
||||
\widetilde{V}_N^{(K)} \rvert = N^K$ & $\lvert
|
||||
V_N^{(K)}\rvert = \frac{N!}{(N-K)!} $ \\\hline
|
||||
Ohne Reihenfolge (\textit{Kombinationen}) &
|
||||
$\lvert \widetilde{C}_N^{(K)} \rvert =
|
||||
\binom{N+K-1}{K} $ & $\lvert C_N^{(K)} \rvert
|
||||
= \binom{N}{K} $
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
\item \pause Permutationen
|
||||
\begin{columns}
|
||||
\column{\kitfourcolumns}
|
||||
\begin{gather*}
|
||||
\text{Normalverteilung:} \hspace{8mm}
|
||||
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}
|
||||
e^{-\frac{(x - \mu)^2}{2\sigma^2}}
|
||||
\Pi_N = \mleft\{ \mleft( a_1, \ldots, a_N
|
||||
\mright) \in \Omega : a_i \neq a_j, i \neq j
|
||||
\mright\}\\
|
||||
\begin{array}{r}
|
||||
\text{Alle Elemente von $\Omega$ unterscheidbar:} \\
|
||||
\text{Jeweils $L_1, L_2, \ldots, L_M$ der Elemente
|
||||
sind gleich:}
|
||||
\end{array}
|
||||
\hspace{5mm}
|
||||
\begin{array}{rl}
|
||||
\lvert \Pi_N \rvert &= N! \\
|
||||
\lvert \Pi_N^{(L_1,
|
||||
L_2, \ldots, L_M)} \rvert &=
|
||||
\frac{N!}{L_1!L_2!\cdots L_M!}
|
||||
\end{array}
|
||||
\end{gather*}
|
||||
\end{subfigure}%
|
||||
\begin{subfigure}[c]{0.4\textwidth}
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
domain=-4:4,
|
||||
samples=100,
|
||||
width=\textwidth,
|
||||
height=0.5\textwidth,
|
||||
ticks=none,
|
||||
xlabel={$x$},
|
||||
ylabel={$f_X(x)$}
|
||||
]
|
||||
\addplot+[mark=none, line width=1pt] {exp(-x^2)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{subfigure}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
\column{\kittwocolumns}
|
||||
\begin{lightgrayhighlightbox}
|
||||
Beispiel:
|
||||
\begin{gather*}
|
||||
\Omega = {A, B, C}\\
|
||||
\Pi_N = \{ (A,B,C), (A,C,B), (B,A,C),\\
|
||||
(B,C,A), (C,A,B), (C,B,A)\}
|
||||
\end{gather*}
|
||||
\vspace*{-14mm}%
|
||||
\end{lightgrayhighlightbox}
|
||||
\end{columns}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Aufgabe}
|
||||
\begin{frame}
|
||||
\frametitle{Zusammenfassung}
|
||||
|
||||
% TODO: Replace slide content with relevant stuff
|
||||
\begin{frame}
|
||||
\frametitle{Aufgabe 2: Variationen \& Permutationen}
|
||||
\begin{columns}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{greenblock}{Potenzmenge}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
\mathcal{P}\mleft( \Omega \mright) = \mleft\{ A:
|
||||
A \subseteq \Omega \mright\}
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{greenblock}{Permutationen}
|
||||
\vspace*{-6mm}
|
||||
\begin{align*}
|
||||
\lvert \Pi_N \rvert &= N! \\
|
||||
\lvert \Pi_N^{(L_1, L_2, \ldots, L_M)} \rvert &=
|
||||
\frac{N!}{L_1!L_2!\cdots L_M!}
|
||||
\end{align*}
|
||||
\end{greenblock}
|
||||
\end{columns}
|
||||
\begin{columns}
|
||||
\column{\kitonecolumn}
|
||||
\column{\kitfourcolumns}
|
||||
\begin{greenblock}{Variationen \& Kombinationen }
|
||||
\begin{table}
|
||||
\begin{tabular}{r||l|l}
|
||||
& Mit Zurücklegen & Ohne Zurücklegen
|
||||
\\\hline\hline Mit Reihenfolge
|
||||
(\textit{Variationen}) & $\lvert
|
||||
\widetilde{V}_N^{(K)} \rvert = N^K$ & $\lvert
|
||||
V_N^{(K)}\rvert = \frac{N!}{(N-K)!} $ \\\hline
|
||||
Ohne Reihenfolge (\textit{Kombinationen}) &
|
||||
$\lvert \widetilde{C}_N^{(K)} \rvert =
|
||||
\binom{N+K-1}{K} $ & $\lvert C_N^{(K)} \rvert
|
||||
= \binom{N}{K} $
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
\end{greenblock}
|
||||
\column{\kitonecolumn}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
Aufgabe 2: Variationen \& Permutationen
|
||||
Ein Burgerrestaurant bietet verschiedene Burger mit den
|
||||
Zutaten Salat
|
||||
(S), Käse (K), Tomate (T)
|
||||
und Patty (P) an. Diese werden zufällig für die Zubereitung eines
|
||||
Burgers ausgewählt.
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Aufgabe}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Aufgabe 2: Variationen \& Permutationen}
|
||||
|
||||
Aufgabe 2: Variationen \& Permutationen
|
||||
Ein Burgerrestaurant bietet verschiedene Burger mit den
|
||||
Zutaten Salat
|
||||
(S), Käse (K), Tomate (T)
|
||||
und Patty (P) an. Diese werden zufällig für die Zubereitung eines
|
||||
Burgers ausgewählt.
|
||||
|
||||
% tex-fmt: off
|
||||
\begin{enumerate}[a{)}]
|
||||
@ -365,50 +451,74 @@
|
||||
\end{enumerate}
|
||||
% tex-fmt: on
|
||||
|
||||
\end{frame}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Zusammenfassung}
|
||||
\begin{frame}
|
||||
\frametitle{Aufgabe 2: Variationen \& Permutationen}
|
||||
|
||||
% TODO: Replace slide content with relevant stuff
|
||||
\begin{frame}
|
||||
\frametitle{Zusammenfassung}
|
||||
Aufgabe 2: Variationen \& Permutationen
|
||||
Ein Burgerrestaurant bietet verschiedene Burger mit den
|
||||
Zutaten Salat
|
||||
(S), Käse (K), Tomate (T)
|
||||
und Patty (P) an. Diese werden zufällig für die Zubereitung eines
|
||||
Burgers ausgewählt.
|
||||
|
||||
\begin{gather*}
|
||||
f_X(x) := \frac{d}{dx} F_X(x) \\
|
||||
P(X \le x) = F_X(x) = \int_{-\infty}^{x} f_X(t) dt \\
|
||||
E(X) = \int_{-\infty}^{\infty} x\cdot f_X(x) dx
|
||||
\end{gather*}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
|
||||
\begin{subfigure}[c]{0.5\textwidth}
|
||||
\centering
|
||||
% tex-fmt: off
|
||||
\begin{enumerate}[a{)}]
|
||||
\item Die Ergebnismenge sei $\Omega = \{S, K, T, P\}$. Wie lautet die
|
||||
Potenzmenge $P(\Omega)$?\pause
|
||||
\begin{align*}
|
||||
\mathcal{P}(\Omega) = \{ &\emptyset, \mleft\{ S \mright\}, \mleft\{ K \mright\}, \mleft\{ T \mright\}, \mleft\{ P \mright\},\\
|
||||
&\mleft\{ S, K \mright\}, \mleft\{ S, T \mright\}, \mleft\{ S, P \mright\}, \mleft\{ K, T \mright\}, \mleft\{ K,P \mright\}, \mleft\{ T, P \mright\}, \\
|
||||
&\mleft\{ S, K, T \mright\}, \mleft\{ S, K, P \mright\}, \mleft\{ S, T, P \mright\}, \mleft\{ K, T, P \mright\}, \mleft\{ S, K, T, P \mright\}\}
|
||||
\end{align*}%
|
||||
\item \pause Für einen normalen Burger werden 3 der 4 möglichen Zutaten
|
||||
ausgewählt und in einer
|
||||
bestimmten Reihenfolge auf das Burgerbrötchen gelegt. Wie viele
|
||||
verschiedene normale
|
||||
Burger gibt es?\pause
|
||||
\begin{gather*}
|
||||
\text{Normalverteilung:} \hspace{8mm}
|
||||
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}
|
||||
e^{-\frac{(x - \mu)^2}{2\sigma^2}}
|
||||
\lvert V_N^{(K)} \rvert = \frac{4!}{1!} = 24
|
||||
\end{gather*}
|
||||
\end{subfigure}%
|
||||
\begin{subfigure}[c]{0.4\textwidth}
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
domain=-4:4,
|
||||
samples=100,
|
||||
width=\textwidth,
|
||||
height=0.5\textwidth,
|
||||
ticks=none,
|
||||
xlabel={$x$},
|
||||
ylabel={$f_X(x)$}
|
||||
]
|
||||
\addplot+[mark=none, line width=1pt] {exp(-x^2)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{subfigure}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
\end{enumerate}
|
||||
% tex-fmt: on
|
||||
\end{frame}
|
||||
|
||||
\end{document}
|
||||
\begin{frame}
|
||||
\frametitle{Aufgabe 2: Variationen \& Permutationen}
|
||||
|
||||
Aufgabe 2: Variationen \& Permutationen
|
||||
Ein Burgerrestaurant bietet verschiedene Burger mit den
|
||||
Zutaten Salat
|
||||
(S), Käse (K), Tomate (T)
|
||||
und Patty (P) an. Diese werden zufällig für die Zubereitung eines
|
||||
Burgers ausgewählt.
|
||||
|
||||
% tex-fmt: off
|
||||
\begin{enumerate}[a{)}]
|
||||
\setcounter{enumi}{2}
|
||||
\item Ein Burger ``Spezial'' besteht ebenfalls aus 3 Zutaten. Jedoch
|
||||
können Tomate und Salat
|
||||
doppelt vorkommen. Wie viele verschiedene Burger „Spezial“ gibt es?\pause
|
||||
\begin{align*}
|
||||
n_\text{Burger} &= n_\text{Burger,alle Unterschiedlich} + n_{\text{Burger,2}\times\text{Salat}} + n_{\text{Burger,2}\times\text{Tomate}} \\
|
||||
&= 24 + 3\cdot 3 + 3\cdot 3 = 42
|
||||
\end{align*}
|
||||
\item \pause Der Burger „Jumbo“ enthält die folgende Menge an Zutaten: $\{S, S,
|
||||
T, T, K, K, K, P, P, P\}$
|
||||
die alle verwendet werden. Wie viele mögliche Belegungen des Burgers
|
||||
``Jumbo'' gibt es?\pause
|
||||
\begin{gather*}
|
||||
\lvert \Pi_N^{L_1,L_2,L_3,L_4} \rvert = \frac{10!}{2!2!3!3!} = 25200
|
||||
\end{gather*}
|
||||
\end{enumerate}
|
||||
% tex-fmt: on
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Zusammenfassung}
|
||||
|
||||
% TODO: Do we even want this section?
|
||||
|
||||
\end{document}
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user