Add slide explaining marginals and transformations
This commit is contained in:
parent
33ff39f974
commit
54407061a0
@ -35,6 +35,7 @@
|
||||
\usepackage{pgfplots}
|
||||
\pgfplotsset{compat=newest}
|
||||
\usepgfplotslibrary{fillbetween}
|
||||
\usepgfplotslibrary{groupplots}
|
||||
|
||||
\usepackage{enumerate}
|
||||
\usepackage{listings}
|
||||
@ -107,7 +108,7 @@
|
||||
|
||||
\begin{itemize}
|
||||
\item Unabhängigkeit hat nichts mit den Einzelverteilungen zu
|
||||
tun, sie ist "eine Ebene höher"
|
||||
tun, sie ist ``eine Ebene höher''
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
@ -300,11 +301,108 @@
|
||||
\begin{frame}
|
||||
\frametitle{Mehrdimensionale Zufallsvariablen}
|
||||
|
||||
\vspace*{-20mm}
|
||||
|
||||
\begin{columns}[t]
|
||||
\column{\kitfourcolumns}
|
||||
\begin{itemize}
|
||||
\item Randdichte
|
||||
\item Transformationssatz (betonen, dass h1, h2 eineindeutig
|
||||
sein müssen; Bild von Folie 85)
|
||||
\begin{align*}
|
||||
f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy
|
||||
\end{align*}
|
||||
\end{itemize}
|
||||
\column{\kittwocolumns}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
|
||||
\begin{tikzpicture}[
|
||||
/pgfplots/scale only axis,
|
||||
/pgfplots/width=5cm,
|
||||
/pgfplots/height=5cm
|
||||
]
|
||||
|
||||
\begin{axis}[
|
||||
name=main axis,
|
||||
view={0}{90},
|
||||
ticks=none,
|
||||
xlabel={$x$},ylabel={$y$},
|
||||
]
|
||||
\addplot3[
|
||||
surf, shader=interp,
|
||||
samples=40,
|
||||
domain=-3:3, y domain=-3:3
|
||||
]
|
||||
{1/(2*pi*sqrt(0.5)) * exp(-1/(2*(1 -
|
||||
sqrt(0.5))) * (x^2 -2*sqrt(0.5)*x*y + y^2) )};
|
||||
\end{axis}
|
||||
|
||||
\node[below] at
|
||||
($(main axis.south west) + (-.5, -.5)$) {$f_{X,Y}(x,y)$};
|
||||
|
||||
\begin{axis}[
|
||||
anchor=south west,
|
||||
at=(main axis.north west),
|
||||
height=2cm,
|
||||
ticks=none,
|
||||
ylabel={$f_X(x)$},
|
||||
samples=50,
|
||||
domain=-3:3,
|
||||
xmin=-3,xmax=3,
|
||||
]
|
||||
\addplot[line width=1pt] {1/sqrt(2*pi) *
|
||||
exp(-x^2/2)};
|
||||
\end{axis}
|
||||
|
||||
\begin{axis}[
|
||||
anchor=north west,
|
||||
at=(main axis.north east),
|
||||
width=2cm,
|
||||
ticks=none,
|
||||
xlabel={$f_Y(y)$},
|
||||
samples=50,
|
||||
domain=-3:3,
|
||||
ymin=-3,ymax=3,
|
||||
]
|
||||
\addplot[line width=1pt] ( {1/sqrt(2*pi)
|
||||
* exp(-x^2/2)}, {x} );
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{figure}
|
||||
\end{columns}
|
||||
|
||||
\pause
|
||||
\vspace*{-45mm}
|
||||
\begin{columns}
|
||||
\column{\kitfourcolumns}
|
||||
\begin{itemize}
|
||||
\item Umrechnung von Dichten mit dem Transformationssatz
|
||||
\begin{gather*}
|
||||
X = h_1(U,V), \hspace{5mm} Y = h_2(U,V) \\[5mm]
|
||||
\mathcal{J} =
|
||||
\begin{pmatrix}
|
||||
\frac{\displaystyle \partial}{\displaystyle
|
||||
\partial u}x & \frac{\displaystyle
|
||||
\partial}{\displaystyle \partial v}x \\[3mm]
|
||||
\frac{\displaystyle \partial}{\displaystyle
|
||||
\partial u}y & \frac{\displaystyle
|
||||
\partial}{\displaystyle \partial v}y
|
||||
\end{pmatrix}
|
||||
=
|
||||
\begin{pmatrix}
|
||||
\frac{\displaystyle \partial}{\displaystyle
|
||||
\partial u}h_1(u,v) & \frac{\displaystyle
|
||||
\partial}{\displaystyle \partial v}h_1(u,v) \\[3mm]
|
||||
\frac{\displaystyle \partial}{\displaystyle
|
||||
\partial u}h_2(u,v) & \frac{\displaystyle
|
||||
\partial}{\displaystyle \partial v}h_2(u,v)
|
||||
\end{pmatrix} \\[5mm]
|
||||
f_{U,V}(u,v) = \lvert
|
||||
\text{det}(\mathcal{J}) \rvert
|
||||
\cdot f_{X,Y} \big(h_1(u,v),h_2(u,v)\big)
|
||||
\end{gather*}
|
||||
\end{itemize}
|
||||
\column{\kittwocolumns}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
@ -333,15 +431,15 @@
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\column{\kitfourcolumns}
|
||||
\begin{greenblock}{Transformationssatz}
|
||||
\begin{greenblock}{Umrechnung von Dichten mit dem Transformationssatz}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
X = h_1(U,V), \hspace{5mm} Y = h_2(U,V) \\[2mm]
|
||||
X = h_1(U,V), \hspace{5mm} Y = h_2(U,V) \\[5mm]
|
||||
\mathcal{J} =
|
||||
\begin{pmatrix}
|
||||
\frac{\displaystyle \partial}{\displaystyle
|
||||
\partial u}x & \frac{\displaystyle
|
||||
\partial}{\displaystyle \partial v}x \\[2mm]
|
||||
\partial}{\displaystyle \partial v}x \\[3mm]
|
||||
\frac{\displaystyle \partial}{\displaystyle
|
||||
\partial u}y & \frac{\displaystyle
|
||||
\partial}{\displaystyle \partial v}y
|
||||
@ -350,11 +448,11 @@
|
||||
\begin{pmatrix}
|
||||
\frac{\displaystyle \partial}{\displaystyle
|
||||
\partial u}h_1(u,v) & \frac{\displaystyle
|
||||
\partial}{\displaystyle \partial v}h_1(u,v) \\[2mm]
|
||||
\partial}{\displaystyle \partial v}h_1(u,v) \\[3mm]
|
||||
\frac{\displaystyle \partial}{\displaystyle
|
||||
\partial u}h_2(u,v) & \frac{\displaystyle
|
||||
\partial}{\displaystyle \partial v}h_2(u,v)
|
||||
\end{pmatrix} \\[3mm]
|
||||
\end{pmatrix} \\[5mm]
|
||||
f_{U,V}(u,v) = \lvert
|
||||
\text{det}(\mathcal{J}) \rvert
|
||||
\cdot f_{X,Y} \big(h_1(u,v),h_2(u,v)\big)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user