Add slide explaining marginals and transformations
This commit is contained in:
parent
33ff39f974
commit
54407061a0
@ -35,6 +35,7 @@
|
|||||||
\usepackage{pgfplots}
|
\usepackage{pgfplots}
|
||||||
\pgfplotsset{compat=newest}
|
\pgfplotsset{compat=newest}
|
||||||
\usepgfplotslibrary{fillbetween}
|
\usepgfplotslibrary{fillbetween}
|
||||||
|
\usepgfplotslibrary{groupplots}
|
||||||
|
|
||||||
\usepackage{enumerate}
|
\usepackage{enumerate}
|
||||||
\usepackage{listings}
|
\usepackage{listings}
|
||||||
@ -107,7 +108,7 @@
|
|||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Unabhängigkeit hat nichts mit den Einzelverteilungen zu
|
\item Unabhängigkeit hat nichts mit den Einzelverteilungen zu
|
||||||
tun, sie ist "eine Ebene höher"
|
tun, sie ist ``eine Ebene höher''
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
@ -300,11 +301,108 @@
|
|||||||
\begin{frame}
|
\begin{frame}
|
||||||
\frametitle{Mehrdimensionale Zufallsvariablen}
|
\frametitle{Mehrdimensionale Zufallsvariablen}
|
||||||
|
|
||||||
\begin{itemize}
|
\vspace*{-20mm}
|
||||||
\item Randdichte
|
|
||||||
\item Transformationssatz (betonen, dass h1, h2 eineindeutig
|
\begin{columns}[t]
|
||||||
sein müssen; Bild von Folie 85)
|
\column{\kitfourcolumns}
|
||||||
\end{itemize}
|
\begin{itemize}
|
||||||
|
\item Randdichte
|
||||||
|
\begin{align*}
|
||||||
|
f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy
|
||||||
|
\end{align*}
|
||||||
|
\end{itemize}
|
||||||
|
\column{\kittwocolumns}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
|
||||||
|
\begin{tikzpicture}[
|
||||||
|
/pgfplots/scale only axis,
|
||||||
|
/pgfplots/width=5cm,
|
||||||
|
/pgfplots/height=5cm
|
||||||
|
]
|
||||||
|
|
||||||
|
\begin{axis}[
|
||||||
|
name=main axis,
|
||||||
|
view={0}{90},
|
||||||
|
ticks=none,
|
||||||
|
xlabel={$x$},ylabel={$y$},
|
||||||
|
]
|
||||||
|
\addplot3[
|
||||||
|
surf, shader=interp,
|
||||||
|
samples=40,
|
||||||
|
domain=-3:3, y domain=-3:3
|
||||||
|
]
|
||||||
|
{1/(2*pi*sqrt(0.5)) * exp(-1/(2*(1 -
|
||||||
|
sqrt(0.5))) * (x^2 -2*sqrt(0.5)*x*y + y^2) )};
|
||||||
|
\end{axis}
|
||||||
|
|
||||||
|
\node[below] at
|
||||||
|
($(main axis.south west) + (-.5, -.5)$) {$f_{X,Y}(x,y)$};
|
||||||
|
|
||||||
|
\begin{axis}[
|
||||||
|
anchor=south west,
|
||||||
|
at=(main axis.north west),
|
||||||
|
height=2cm,
|
||||||
|
ticks=none,
|
||||||
|
ylabel={$f_X(x)$},
|
||||||
|
samples=50,
|
||||||
|
domain=-3:3,
|
||||||
|
xmin=-3,xmax=3,
|
||||||
|
]
|
||||||
|
\addplot[line width=1pt] {1/sqrt(2*pi) *
|
||||||
|
exp(-x^2/2)};
|
||||||
|
\end{axis}
|
||||||
|
|
||||||
|
\begin{axis}[
|
||||||
|
anchor=north west,
|
||||||
|
at=(main axis.north east),
|
||||||
|
width=2cm,
|
||||||
|
ticks=none,
|
||||||
|
xlabel={$f_Y(y)$},
|
||||||
|
samples=50,
|
||||||
|
domain=-3:3,
|
||||||
|
ymin=-3,ymax=3,
|
||||||
|
]
|
||||||
|
\addplot[line width=1pt] ( {1/sqrt(2*pi)
|
||||||
|
* exp(-x^2/2)}, {x} );
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{figure}
|
||||||
|
\end{columns}
|
||||||
|
|
||||||
|
\pause
|
||||||
|
\vspace*{-45mm}
|
||||||
|
\begin{columns}
|
||||||
|
\column{\kitfourcolumns}
|
||||||
|
\begin{itemize}
|
||||||
|
\item Umrechnung von Dichten mit dem Transformationssatz
|
||||||
|
\begin{gather*}
|
||||||
|
X = h_1(U,V), \hspace{5mm} Y = h_2(U,V) \\[5mm]
|
||||||
|
\mathcal{J} =
|
||||||
|
\begin{pmatrix}
|
||||||
|
\frac{\displaystyle \partial}{\displaystyle
|
||||||
|
\partial u}x & \frac{\displaystyle
|
||||||
|
\partial}{\displaystyle \partial v}x \\[3mm]
|
||||||
|
\frac{\displaystyle \partial}{\displaystyle
|
||||||
|
\partial u}y & \frac{\displaystyle
|
||||||
|
\partial}{\displaystyle \partial v}y
|
||||||
|
\end{pmatrix}
|
||||||
|
=
|
||||||
|
\begin{pmatrix}
|
||||||
|
\frac{\displaystyle \partial}{\displaystyle
|
||||||
|
\partial u}h_1(u,v) & \frac{\displaystyle
|
||||||
|
\partial}{\displaystyle \partial v}h_1(u,v) \\[3mm]
|
||||||
|
\frac{\displaystyle \partial}{\displaystyle
|
||||||
|
\partial u}h_2(u,v) & \frac{\displaystyle
|
||||||
|
\partial}{\displaystyle \partial v}h_2(u,v)
|
||||||
|
\end{pmatrix} \\[5mm]
|
||||||
|
f_{U,V}(u,v) = \lvert
|
||||||
|
\text{det}(\mathcal{J}) \rvert
|
||||||
|
\cdot f_{X,Y} \big(h_1(u,v),h_2(u,v)\big)
|
||||||
|
\end{gather*}
|
||||||
|
\end{itemize}
|
||||||
|
\column{\kittwocolumns}
|
||||||
|
\end{columns}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
@ -333,15 +431,15 @@
|
|||||||
\end{gather*}
|
\end{gather*}
|
||||||
\end{greenblock}
|
\end{greenblock}
|
||||||
\column{\kitfourcolumns}
|
\column{\kitfourcolumns}
|
||||||
\begin{greenblock}{Transformationssatz}
|
\begin{greenblock}{Umrechnung von Dichten mit dem Transformationssatz}
|
||||||
\vspace*{-6mm}
|
\vspace*{-6mm}
|
||||||
\begin{gather*}
|
\begin{gather*}
|
||||||
X = h_1(U,V), \hspace{5mm} Y = h_2(U,V) \\[2mm]
|
X = h_1(U,V), \hspace{5mm} Y = h_2(U,V) \\[5mm]
|
||||||
\mathcal{J} =
|
\mathcal{J} =
|
||||||
\begin{pmatrix}
|
\begin{pmatrix}
|
||||||
\frac{\displaystyle \partial}{\displaystyle
|
\frac{\displaystyle \partial}{\displaystyle
|
||||||
\partial u}x & \frac{\displaystyle
|
\partial u}x & \frac{\displaystyle
|
||||||
\partial}{\displaystyle \partial v}x \\[2mm]
|
\partial}{\displaystyle \partial v}x \\[3mm]
|
||||||
\frac{\displaystyle \partial}{\displaystyle
|
\frac{\displaystyle \partial}{\displaystyle
|
||||||
\partial u}y & \frac{\displaystyle
|
\partial u}y & \frac{\displaystyle
|
||||||
\partial}{\displaystyle \partial v}y
|
\partial}{\displaystyle \partial v}y
|
||||||
@ -350,11 +448,11 @@
|
|||||||
\begin{pmatrix}
|
\begin{pmatrix}
|
||||||
\frac{\displaystyle \partial}{\displaystyle
|
\frac{\displaystyle \partial}{\displaystyle
|
||||||
\partial u}h_1(u,v) & \frac{\displaystyle
|
\partial u}h_1(u,v) & \frac{\displaystyle
|
||||||
\partial}{\displaystyle \partial v}h_1(u,v) \\[2mm]
|
\partial}{\displaystyle \partial v}h_1(u,v) \\[3mm]
|
||||||
\frac{\displaystyle \partial}{\displaystyle
|
\frac{\displaystyle \partial}{\displaystyle
|
||||||
\partial u}h_2(u,v) & \frac{\displaystyle
|
\partial u}h_2(u,v) & \frac{\displaystyle
|
||||||
\partial}{\displaystyle \partial v}h_2(u,v)
|
\partial}{\displaystyle \partial v}h_2(u,v)
|
||||||
\end{pmatrix} \\[3mm]
|
\end{pmatrix} \\[5mm]
|
||||||
f_{U,V}(u,v) = \lvert
|
f_{U,V}(u,v) = \lvert
|
||||||
\text{det}(\mathcal{J}) \rvert
|
\text{det}(\mathcal{J}) \rvert
|
||||||
\cdot f_{X,Y} \big(h_1(u,v),h_2(u,v)\big)
|
\cdot f_{X,Y} \big(h_1(u,v),h_2(u,v)\big)
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user