Add theory for exercise 1
This commit is contained in:
parent
edbadcff02
commit
1ad4623e22
@ -43,7 +43,7 @@
|
||||
|
||||
\usepackage{tikz}
|
||||
\usepackage{tikz-3dplot}
|
||||
\usetikzlibrary{spy, external, intersections}
|
||||
\usetikzlibrary{spy, external, intersections, positioning}
|
||||
%\tikzexternalize[prefix=build/]
|
||||
|
||||
\usepackage{pgfplots}
|
||||
@ -80,6 +80,145 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Theorie Wiederholung}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Bedingte Wahrscheinlichkeiten \& Bayes}
|
||||
|
||||
\vspace*{-10mm}
|
||||
|
||||
\begin{columns}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{itemize}
|
||||
\item Definition der bedingten Wahrscheinlichkeit
|
||||
\begin{gather*}
|
||||
P(A\vert B) = \frac{P(AB)}{P(B)}
|
||||
\end{gather*}
|
||||
\item Formel von Bayes
|
||||
\begin{gather*}
|
||||
P(A\vert B) = \frac{P(B\vert A) P(A)}{P(B)}
|
||||
\end{gather*}
|
||||
\end{itemize}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
\node[rectangle, minimum width=8cm, minimum height=5cm,
|
||||
draw, line width=1pt, fill=black!20] at (0,0) {};
|
||||
\node [circle, minimum size = 4cm,
|
||||
draw, line width=1pt, fill=KITgreen,
|
||||
fill opacity = 0.5] at (1.25cm,0) {};
|
||||
\draw[line width=1pt, fill=KITblue,
|
||||
fill opacity = 0.5, rounded corners=5mm]
|
||||
(-2.4cm, -2.25cm) -- (-2.4cm, 2.25cm) -- (1.1cm,0) -- cycle;
|
||||
|
||||
\node[left] at (4cm, 2cm) {\Large $\Omega$};
|
||||
\node at (-1.8cm, 0) {$A$};
|
||||
\node at (1.8cm, 0) {$B$};
|
||||
\node at (0, 0) {$AB$};
|
||||
\end{tikzpicture}
|
||||
\end{figure}
|
||||
\end{columns}
|
||||
\vspace*{1cm}
|
||||
\pause
|
||||
\begin{columns}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{itemize}
|
||||
\item Satz der totalen Wahrscheinlichkeit
|
||||
% tex-fmt: off
|
||||
\begin{gather*}
|
||||
\text{Voraussetzungen: }\hspace{5mm} \left\{
|
||||
\begin{array}{l}
|
||||
A_1, A_2, \ldots \text{ disjunkt}\\
|
||||
\displaystyle\sum_{n} A_n = \Omega
|
||||
\end{array}
|
||||
\right.\\[1em]
|
||||
P(B) = \sum_{n} P(B\vert A_n)P(A_n)\\
|
||||
\end{gather*}
|
||||
% tex-fmt: on
|
||||
\end{itemize}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
\newcommand{\hordist}{1.2cm}
|
||||
\newcommand{\vertdist}{2cm}
|
||||
|
||||
\node[circle, fill=KITgreen, inner sep=0pt,
|
||||
minimum size=3mm] (root) at (0, 0) {};
|
||||
\node[circle, fill=KITgreen, inner sep=0pt,
|
||||
minimum size=3mm, below left=\vertdist and
|
||||
2.4*\hordist of root] (n1) {};
|
||||
\node[circle, fill=KITgreen, inner sep=0pt,
|
||||
minimum size=3mm, below right=\vertdist and
|
||||
2.4*\hordist of root] (n2) {};
|
||||
\node[circle, fill=KITgreen, inner sep=0pt,
|
||||
minimum size=3mm, below left=\vertdist and \hordist
|
||||
of n1] (n11) {};
|
||||
\node[circle, fill=KITgreen, inner sep=0pt,
|
||||
minimum size=3mm, below right=\vertdist and \hordist
|
||||
of n1] (n12) {};
|
||||
\node[circle, fill=KITgreen, inner sep=0pt,
|
||||
minimum size=3mm, below left=\vertdist and \hordist
|
||||
of n2] (n21) {};
|
||||
\node[circle, fill=KITgreen, inner sep=0pt,
|
||||
minimum size=3mm, below right=\vertdist and \hordist
|
||||
of n2] (n22) {};
|
||||
|
||||
\draw[-{Latex}, line width=1pt] (root) -- (n1);
|
||||
\draw[-{Latex}, line width=1pt] (root) -- (n2);
|
||||
\draw[-{Latex}, line width=1pt] (n1) -- (n11);
|
||||
\draw[-{Latex}, line width=1pt] (n1) -- (n12);
|
||||
\draw[-{Latex}, line width=1pt] (n2) -- (n21);
|
||||
\draw[-{Latex}, line width=1pt] (n2) -- (n22);
|
||||
|
||||
\node[left] at ($(root)!0.4!(n1)$) {$P(A_1)$};
|
||||
\node[right] at ($(root)!0.4!(n2)$) {$P(A_2)$};
|
||||
|
||||
\node[left] at ($(n1)!0.4!(n11)$) {$P(B\vert A_1)$};
|
||||
\node[right] at ($(n1)!0.2!(n12)$) {$P(C\vert A_1)$};
|
||||
\node[left] at ($(n2)!0.6!(n21)$) {$P(B\vert A_2)$};
|
||||
\node[right] at ($(n2)!0.4!(n22)$) {$P(C\vert A_2)$};
|
||||
|
||||
\node[below] at (n11) {$P(BA_1)$};
|
||||
\node[below] at (n12) {$P(CA_2)$};
|
||||
\node[below] at (n21) {$P(BA_1)$};
|
||||
\node[below] at (n22) {$P(CA_2)$};
|
||||
\end{tikzpicture}
|
||||
\end{figure}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Zusammenfassung}
|
||||
|
||||
\begin{columns}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{greenblock}{Bedingte Wahrscheinlichkeit}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
P(A\vert B) = \frac{P(AB)}{P(B)}
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{greenblock}{Formel von Bayes}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
P(A\vert B) = \frac{P(AB)}{P(B)}
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\end{columns}
|
||||
\begin{columns}
|
||||
\column{\kitonecolumn}
|
||||
\column{\kitthreecolumns}
|
||||
\begin{greenblock}{Satz der totalen Wahrscheinlichkeit}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
P(B) = \sum_{n} P(B\vert A_n)P(A_n)
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\column{\kitonecolumn}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
% \begin{frame}{Ereignisse \& Laplace}
|
||||
% \vspace*{-15mm}
|
||||
% \begin{itemize}
|
||||
@ -160,7 +299,8 @@
|
||||
% \begin{columns}
|
||||
% \column{\kitthreecolumns}
|
||||
% \begin{gather*}
|
||||
% P_r = \frac{\binom{R}{r}\binom{N-R}{n-r}}{\binom{N}{n}}
|
||||
% P_r =
|
||||
% \frac{\binom{R}{r}\binom{N-R}{n-r}}{\binom{N}{n}}
|
||||
% \end{gather*}
|
||||
% \column{\kitthreecolumns}
|
||||
% \begin{lightgrayhighlightbox}
|
||||
@ -270,7 +410,8 @@
|
||||
% \begin{align*}
|
||||
% \mathcal{P}(\Omega) = \{ &\emptyset,
|
||||
% \mleft\{ A \mright\}, \mleft\{ B \mright\},
|
||||
% \mleft\{ C \mright\}, \mleft\{ A, B \mright\},\\
|
||||
% \mleft\{ C \mright\}, \mleft\{ A, B
|
||||
% \mright\},\\
|
||||
% &\mleft\{ A, C \mright\},
|
||||
% \mleft\{ B, C \mright\}, \mleft\{ A, B, C
|
||||
% \mright\} \}
|
||||
@ -302,7 +443,8 @@
|
||||
% \mright) \in \Omega : a_i \neq a_j, i \neq j
|
||||
% \mright\}\\
|
||||
% \begin{array}{r}
|
||||
% \text{Alle Elemente von $\Omega$ unterscheidbar:} \\
|
||||
% \text{Alle Elemente von $\Omega$
|
||||
% unterscheidbar:} \\
|
||||
% \text{Jeweils $L_1, L_2, \ldots, L_M$ der Elemente
|
||||
% sind gleich:}
|
||||
% \end{array}
|
||||
@ -382,7 +524,8 @@
|
||||
|
||||
Bei einer Qualitätskontrolle können Werkstücke zwei Fehler
|
||||
aufweisen: Fehler A, Fehler B, oder
|
||||
beide Fehler gleichzeitig. Die folgenden Wahrscheinlichkeiten sind bekannt:
|
||||
beide Fehler gleichzeitig. Die folgenden Wahrscheinlichkeiten
|
||||
sind bekannt:
|
||||
\begin{itemize}
|
||||
\item mit Wahrscheinlichkeit 0,05 hat ein Werkstück den Fehler A
|
||||
\item mit Wahrscheinlichkeit 0,01 hat ein Werkstück beide Fehler
|
||||
|
||||
Loading…
Reference in New Issue
Block a user