Finish exercise 1
This commit is contained in:
parent
179e9442c8
commit
1a2987e922
@ -26,8 +26,7 @@
|
|||||||
\input{lib/latex-common/common.tex}
|
\input{lib/latex-common/common.tex}
|
||||||
\pgfplotsset{colorscheme/rocket}
|
\pgfplotsset{colorscheme/rocket}
|
||||||
|
|
||||||
%TODO: Fix path
|
\newcommand{\res}{src/2025-11-07/res}
|
||||||
\newcommand{\res}{src/template/res}
|
|
||||||
|
|
||||||
% \tikzstyle{every node}=[font=\small]
|
% \tikzstyle{every node}=[font=\small]
|
||||||
% \captionsetup[sub]{font=small}
|
% \captionsetup[sub]{font=small}
|
||||||
@ -84,7 +83,7 @@
|
|||||||
\item Wiederholung der für die Aufgaben wichtigsten Teile
|
\item Wiederholung der für die Aufgaben wichtigsten Teile
|
||||||
der Theorie
|
der Theorie
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\item Angesetzte Struktur
|
\item Struktur der Tutorien
|
||||||
\begin{table}
|
\begin{table}
|
||||||
\begin{tabular}{l||c}
|
\begin{tabular}{l||c}
|
||||||
Abschnitt & Dauer \\\hline\hline
|
Abschnitt & Dauer \\\hline\hline
|
||||||
@ -108,73 +107,143 @@
|
|||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\subsection{Theorie Wiederholung}
|
\subsection{Theorie Wiederholung}
|
||||||
|
|
||||||
% TODO: Replace slide content with relevant stuff
|
\begin{frame}{Ereignisse \& Laplace}
|
||||||
\begin{frame}
|
\vspace*{-15mm}
|
||||||
\frametitle{Theorie Wiederholung I}
|
\begin{itemize}
|
||||||
|
\item Ereignisse
|
||||||
\begin{columns}
|
\begin{columns}
|
||||||
\column{\kitthreecolumns}
|
\column{\kitthreecolumns}
|
||||||
\begin{greenblock}{Zufallsvariablen (ZV)}%
|
\begin{align*}
|
||||||
\vspace*{-6mm}
|
\text{Ergebnisraum: } & \hspace{5mm} \Omega =
|
||||||
|
\mleft\{ \omega_1, \ldots, \omega_N \mright\}\\
|
||||||
|
\text{Ergebnis: } & \hspace{5mm} \omega_i\\
|
||||||
|
\text{Ereignis: } & \hspace{5mm} A \subseteq \Omega
|
||||||
|
\end{align*}
|
||||||
|
\column{\kitthreecolumns}
|
||||||
|
\begin{lightgrayhighlightbox}
|
||||||
|
Beispiel: Würfeln mit einem Würfel
|
||||||
|
\begin{align*}
|
||||||
|
\Omega &= \mleft\{ 1, \ldots, 6 \mright\}\\
|
||||||
|
A &= \mleft\{ 1, 6 \mright\}
|
||||||
|
\end{align*}\\[1em]
|
||||||
|
\vspace*{-12mm}
|
||||||
|
\end{lightgrayhighlightbox}
|
||||||
|
\begin{lightgrayhighlightbox}
|
||||||
|
Beispiel: Würfeln mit zwei Würfeln
|
||||||
|
\begin{align*}
|
||||||
|
\Omega &= \mleft\{(i,j): i,j \in \mleft\{
|
||||||
|
1,\ldots, 6 \mright\}\mright\} \\
|
||||||
|
A &= \mleft\{ (1,1),(2,2), \ldots, (6,6) \mright\}
|
||||||
|
\end{align*}
|
||||||
|
\vspace*{-12mm}
|
||||||
|
\end{lightgrayhighlightbox}
|
||||||
|
\vspace*{0mm}
|
||||||
|
\end{columns}\pause
|
||||||
|
\item Laplace'sches Zufallsexperiment
|
||||||
\begin{gather*}
|
\begin{gather*}
|
||||||
f_X(x) := \frac{d}{dx} F_X(x) \\
|
\text{Voraussetzungen: }\hspace{5mm} \left\{
|
||||||
P(X \le x) = F_X(x) = \int_{-\infty}^{x} f_X(t) dt \\
|
\begin{array}{l}
|
||||||
E(X) = \int_{-\infty}^{\infty} x\cdot f_X(x) dx
|
\lvert\Omega\rvert \text{ endlich}\\
|
||||||
\end{gather*}
|
P(\omega_i) = \frac{1}{\lvert\Omega\rvert}
|
||||||
\end{greenblock}
|
\end{array}
|
||||||
|
\right.\\[1em]
|
||||||
|
P(A) = \frac{\lvert A \rvert}{\lvert \Omega \rvert} =
|
||||||
|
\frac{\text{Anzahl ``günstiger''
|
||||||
|
Möglichkeiten}}{\text{Anzahl Möglichkeiten}}
|
||||||
|
\end{gather*}
|
||||||
|
\end{itemize}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
\column{\kitthreecolumns}
|
\begin{frame}{Kombinationen und Hypergeometrische\\ Verteilung}
|
||||||
\begin{greenblock}{Important Equations}%
|
\begin{itemize}
|
||||||
\vspace*{-6mm}
|
\item Kombinationen: Ziehen ohne zurücklegen, ohne
|
||||||
\begin{gather*}
|
Betrachtung der Reihenfolge
|
||||||
f_X(x) := \frac{d}{dx} F_X(x) \\
|
\vspace*{5mm}
|
||||||
P(X \le x) = F_X(x) = \int_{-\infty}^{x} f_X(t) dt \\
|
\begin{columns}
|
||||||
E(X) = \int_{-\infty}^{\infty} x\cdot f_X(x) dx
|
\column{\kitthreecolumns}
|
||||||
\end{gather*}
|
\begin{gather*}
|
||||||
\end{greenblock}
|
\lvert C_N^{(K)} \rvert = \binom{N}{K} =
|
||||||
\end{columns}
|
\frac{N!}{(N-K)!K!}
|
||||||
|
\end{gather*}
|
||||||
|
\column{\kitthreecolumns}
|
||||||
|
\begin{lightgrayhighlightbox}
|
||||||
|
Beispiel: Wie viele mögliche Ergebnisse gibt
|
||||||
|
es beim Lotto ``6 aus 49''?
|
||||||
|
\vspace*{0mm}
|
||||||
|
\begin{align*}
|
||||||
|
\begin{array}{c}
|
||||||
|
N = 49 \\
|
||||||
|
K = 6
|
||||||
|
\end{array} \hspace{5mm} \rightarrow
|
||||||
|
\hspace{5mm} \binom{49}{6} = 13983816
|
||||||
|
\end{align*}
|
||||||
|
\vspace*{-8mm}
|
||||||
|
\end{lightgrayhighlightbox}
|
||||||
|
\end{columns}
|
||||||
|
\pause
|
||||||
|
\item Hypergeometrische Verteilung
|
||||||
|
\begin{columns}
|
||||||
|
\column{\kitthreecolumns}
|
||||||
|
\begin{gather*}
|
||||||
|
P_r = \frac{\binom{R}{r}\binom{N-R}{n-r}}{\binom{N}{n}}
|
||||||
|
\end{gather*}
|
||||||
|
\column{\kitthreecolumns}
|
||||||
|
\begin{lightgrayhighlightbox}
|
||||||
|
Beispiel: In einer Urne sind N Kugeln, davon
|
||||||
|
R rot. Wie groß ist die Wahrscheinlichkeit
|
||||||
|
beim ziehen von n Kugeln (ohne Zurücklegen)
|
||||||
|
genau r rote zu erwischen?
|
||||||
|
\end{lightgrayhighlightbox}
|
||||||
|
\end{columns}
|
||||||
|
\end{itemize}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
\begin{greenblock}{Normalverteilung}
|
\begin{frame}{Zusammenfassung}
|
||||||
\begin{columns}
|
\begin{columns}
|
||||||
\column{\kitthreecolumns}
|
\column{\kitthreecolumns}
|
||||||
\begin{gather*}
|
\begin{greenblock}{Laplace'sches Zufallsexperiment}%
|
||||||
\text{Normalverteilung:} \hspace{8mm}
|
\vspace*{-6mm}
|
||||||
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}
|
\begin{gather*}
|
||||||
e^{-\frac{(x - \mu)^2}{2\sigma^2}}
|
P(A) = \frac{\lvert A \rvert}{\lvert \Omega \rvert} =
|
||||||
\end{gather*}
|
\frac{\text{Anzahl ``günstiger''
|
||||||
|
Möglichkeiten}}{\text{Anzahl Möglichkeiten}}
|
||||||
|
\end{gather*}
|
||||||
|
\end{greenblock}
|
||||||
|
|
||||||
\column{\kitthreecolumns}
|
\column{\kitthreecolumns}
|
||||||
\begin{figure}
|
\begin{greenblock}{Kombinationen}%
|
||||||
\centering
|
\vspace*{-6mm}
|
||||||
\begin{tikzpicture}
|
\begin{gather*}
|
||||||
\begin{axis}[
|
\lvert C_N^{(K)}\rvert = \binom{N}{K} =
|
||||||
domain=-4:4,
|
\frac{N!}{(N-K)!K!}
|
||||||
samples=100,
|
\end{gather*}
|
||||||
width=11cm,
|
\end{greenblock}
|
||||||
height=6cm,
|
|
||||||
ticks=none,
|
|
||||||
xlabel={$x$},
|
|
||||||
ylabel={$f_X(x)$}
|
|
||||||
]
|
|
||||||
\addplot+[mark=none, line width=1pt] {exp(-x^2)};
|
|
||||||
\end{axis}
|
|
||||||
\end{tikzpicture}
|
|
||||||
\end{figure}
|
|
||||||
\end{columns}
|
\end{columns}
|
||||||
\end{greenblock}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
\begin{columns}
|
||||||
\subsection{Aufgabe}
|
\column{\kitonecolumn}
|
||||||
|
\column{\kitthreecolumns}
|
||||||
|
\begin{greenblock}{Hypergeometrische Verteilung}%
|
||||||
|
\vspace*{-6mm}
|
||||||
|
\begin{gather*}
|
||||||
|
P_R = \frac{\binom{R}{r}\binom{N-R}{n-r}}{\binom{N}{n}}
|
||||||
|
\end{gather*}
|
||||||
|
\end{greenblock}
|
||||||
|
\column{\kitonecolumn}
|
||||||
|
\end{columns}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
% TODO: Replace slide content with relevant stuff
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\begin{frame}
|
\subsection{Aufgabe}
|
||||||
\frametitle{Aufgabe 1: Ergebnisraum \& Hypergeometrische\\ Verteilung}
|
|
||||||
|
|
||||||
Bei einem Kartenspiel erhält ein Spieler 5 Karten aus einem Deck
|
\begin{frame}
|
||||||
von 52 Karten (bestehend aus
|
\frametitle{Aufgabe 1: Ergebnisraum \&
|
||||||
13 Arten mit je 4 Farben). Wie groß ist die Wahrscheinlichkeit,
|
Hypergeometrische\\ Verteilung}
|
||||||
dass der Spieler
|
|
||||||
|
Bei einem Kartenspiel erhält ein Spieler 5 Karten aus einem Deck
|
||||||
|
von 52 Karten (bestehend aus
|
||||||
|
13 Arten mit je 4 Farben). Wie groß ist die Wahrscheinlichkeit,
|
||||||
|
dass der Spieler
|
||||||
|
|
||||||
% tex-fmt: off
|
% tex-fmt: off
|
||||||
\begin{enumerate}[a{)}]
|
\begin{enumerate}[a{)}]
|
||||||
@ -184,66 +253,98 @@
|
|||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
% tex-fmt: on
|
% tex-fmt: on
|
||||||
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
\begin{frame}
|
||||||
\section{Aufgabe 2}
|
\frametitle{Aufgabe 1: Ergebnisraum \&
|
||||||
|
Hypergeometrische\\ Verteilung}
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
Bei einem Kartenspiel erhält ein Spieler 5 Karten aus einem Deck
|
||||||
\subsection{Theorie Wiederholung}
|
von 52 Karten (bestehend aus
|
||||||
|
13 Arten mit je 4 Farben). Wie groß ist die Wahrscheinlichkeit,
|
||||||
|
dass der Spieler
|
||||||
|
|
||||||
% TODO: Replace slide content with relevant stuff
|
% tex-fmt: off
|
||||||
\begin{frame}
|
\begin{enumerate}[a{)}]
|
||||||
\frametitle{Theorie Wiederholung II}
|
\item mindestens ein Ass hat?\pause
|
||||||
|
\begin{gather*}
|
||||||
|
P(\text{mindestens ein Ass}) = 1 - P(\text{kein Ass})
|
||||||
|
= 1 - \frac{\binom{4}{0}\binom{48}{5}}{\binom{52}{5}} \approx 0.341
|
||||||
|
\end{gather*}\pause\vspace*{-5mm}
|
||||||
|
\item genau ein Ass hat?\pause
|
||||||
|
\begin{gather*}
|
||||||
|
P(\text{genau ein Ass}) = \frac{\binom{4}{1}\binom{48}{4}}{\binom{52}{5}} \approx 0.299
|
||||||
|
\end{gather*}\pause
|
||||||
|
\item mindestens zwei Karten der gleichen Art (“Paar”) hat?\pause
|
||||||
|
\begin{align*}
|
||||||
|
P(\text{mindestens zwei gleiche Karten}) &= 1 - P(\text{alle Karten unterschiedlich}) \\
|
||||||
|
&= 1 - \frac{\text{Anzahl Möglichkeiten mit nur unterschiedlichen Karten}}{\text{Anzahl Möglichkeiten}}\\
|
||||||
|
&= 1 - \frac{\binom{13}{5}\cdot 4^5}{\binom{52}{5}} \approx 0.493
|
||||||
|
\end{align*}
|
||||||
|
\end{enumerate}
|
||||||
|
% tex-fmt: on
|
||||||
|
|
||||||
\begin{gather*}
|
\end{frame}
|
||||||
f_X(x) := \frac{d}{dx} F_X(x) \\
|
|
||||||
P(X \le x) = F_X(x) = \int_{-\infty}^{x} f_X(t) dt \\
|
|
||||||
E(X) = \int_{-\infty}^{\infty} x\cdot f_X(x) dx
|
|
||||||
\end{gather*}
|
|
||||||
|
|
||||||
\begin{figure}
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\centering
|
\section{Aufgabe 2}
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\subsection{Theorie Wiederholung}
|
||||||
|
|
||||||
\begin{subfigure}[c]{0.5\textwidth}
|
% TODO: Replace slide content with relevant stuff
|
||||||
|
\begin{frame}
|
||||||
|
\frametitle{Theorie Wiederholung II}
|
||||||
|
|
||||||
|
\begin{gather*}
|
||||||
|
f_X(x) := \frac{d}{dx} F_X(x) \\
|
||||||
|
P(X \le x) = F_X(x) = \int_{-\infty}^{x} f_X(t) dt \\
|
||||||
|
E(X) = \int_{-\infty}^{\infty} x\cdot f_X(x) dx
|
||||||
|
\end{gather*}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
\centering
|
\centering
|
||||||
\begin{gather*}
|
|
||||||
\text{Normalverteilung:} \hspace{8mm}
|
|
||||||
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}
|
|
||||||
e^{-\frac{(x - \mu)^2}{2\sigma^2}}
|
|
||||||
\end{gather*}
|
|
||||||
\end{subfigure}%
|
|
||||||
\begin{subfigure}[c]{0.4\textwidth}
|
|
||||||
\centering
|
|
||||||
\begin{tikzpicture}
|
|
||||||
\begin{axis}[
|
|
||||||
domain=-4:4,
|
|
||||||
samples=100,
|
|
||||||
width=\textwidth,
|
|
||||||
height=0.5\textwidth,
|
|
||||||
ticks=none,
|
|
||||||
xlabel={$x$},
|
|
||||||
ylabel={$f_X(x)$}
|
|
||||||
]
|
|
||||||
\addplot+[mark=none, line width=1pt] {exp(-x^2)};
|
|
||||||
\end{axis}
|
|
||||||
\end{tikzpicture}
|
|
||||||
\end{subfigure}
|
|
||||||
\end{figure}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
\begin{subfigure}[c]{0.5\textwidth}
|
||||||
\subsection{Aufgabe}
|
\centering
|
||||||
|
\begin{gather*}
|
||||||
|
\text{Normalverteilung:} \hspace{8mm}
|
||||||
|
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}
|
||||||
|
e^{-\frac{(x - \mu)^2}{2\sigma^2}}
|
||||||
|
\end{gather*}
|
||||||
|
\end{subfigure}%
|
||||||
|
\begin{subfigure}[c]{0.4\textwidth}
|
||||||
|
\centering
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}[
|
||||||
|
domain=-4:4,
|
||||||
|
samples=100,
|
||||||
|
width=\textwidth,
|
||||||
|
height=0.5\textwidth,
|
||||||
|
ticks=none,
|
||||||
|
xlabel={$x$},
|
||||||
|
ylabel={$f_X(x)$}
|
||||||
|
]
|
||||||
|
\addplot+[mark=none, line width=1pt] {exp(-x^2)};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{subfigure}
|
||||||
|
\end{figure}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
% TODO: Replace slide content with relevant stuff
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\begin{frame}
|
\subsection{Aufgabe}
|
||||||
\frametitle{Aufgabe 2: Variationen \& Permutationen}
|
|
||||||
|
|
||||||
Aufgabe 2: Variationen \& Permutationen
|
% TODO: Replace slide content with relevant stuff
|
||||||
Ein Burgerrestaurant bietet verschiedene Burger mit den Zutaten Salat
|
\begin{frame}
|
||||||
(S), Käse (K), Tomate (T)
|
\frametitle{Aufgabe 2: Variationen \& Permutationen}
|
||||||
und Patty (P) an. Diese werden zufällig für die Zubereitung eines
|
|
||||||
Burgers ausgewählt.
|
Aufgabe 2: Variationen \& Permutationen
|
||||||
|
Ein Burgerrestaurant bietet verschiedene Burger mit den
|
||||||
|
Zutaten Salat
|
||||||
|
(S), Käse (K), Tomate (T)
|
||||||
|
und Patty (P) an. Diese werden zufällig für die Zubereitung eines
|
||||||
|
Burgers ausgewählt.
|
||||||
|
|
||||||
% tex-fmt: off
|
% tex-fmt: off
|
||||||
\begin{enumerate}[a{)}]
|
\begin{enumerate}[a{)}]
|
||||||
@ -264,50 +365,50 @@
|
|||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
% tex-fmt: on
|
% tex-fmt: on
|
||||||
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\section{Zusammenfassung}
|
\section{Zusammenfassung}
|
||||||
|
|
||||||
% TODO: Replace slide content with relevant stuff
|
% TODO: Replace slide content with relevant stuff
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
\frametitle{Zusammenfassung}
|
\frametitle{Zusammenfassung}
|
||||||
|
|
||||||
\begin{gather*}
|
\begin{gather*}
|
||||||
f_X(x) := \frac{d}{dx} F_X(x) \\
|
f_X(x) := \frac{d}{dx} F_X(x) \\
|
||||||
P(X \le x) = F_X(x) = \int_{-\infty}^{x} f_X(t) dt \\
|
P(X \le x) = F_X(x) = \int_{-\infty}^{x} f_X(t) dt \\
|
||||||
E(X) = \int_{-\infty}^{\infty} x\cdot f_X(x) dx
|
E(X) = \int_{-\infty}^{\infty} x\cdot f_X(x) dx
|
||||||
\end{gather*}
|
\end{gather*}
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
\centering
|
|
||||||
|
|
||||||
\begin{subfigure}[c]{0.5\textwidth}
|
|
||||||
\centering
|
\centering
|
||||||
\begin{gather*}
|
|
||||||
\text{Normalverteilung:} \hspace{8mm}
|
|
||||||
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}
|
|
||||||
e^{-\frac{(x - \mu)^2}{2\sigma^2}}
|
|
||||||
\end{gather*}
|
|
||||||
\end{subfigure}%
|
|
||||||
\begin{subfigure}[c]{0.4\textwidth}
|
|
||||||
\centering
|
|
||||||
\begin{tikzpicture}
|
|
||||||
\begin{axis}[
|
|
||||||
domain=-4:4,
|
|
||||||
samples=100,
|
|
||||||
width=\textwidth,
|
|
||||||
height=0.5\textwidth,
|
|
||||||
ticks=none,
|
|
||||||
xlabel={$x$},
|
|
||||||
ylabel={$f_X(x)$}
|
|
||||||
]
|
|
||||||
\addplot+[mark=none, line width=1pt] {exp(-x^2)};
|
|
||||||
\end{axis}
|
|
||||||
\end{tikzpicture}
|
|
||||||
\end{subfigure}
|
|
||||||
\end{figure}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\end{document}
|
\begin{subfigure}[c]{0.5\textwidth}
|
||||||
|
\centering
|
||||||
|
\begin{gather*}
|
||||||
|
\text{Normalverteilung:} \hspace{8mm}
|
||||||
|
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}
|
||||||
|
e^{-\frac{(x - \mu)^2}{2\sigma^2}}
|
||||||
|
\end{gather*}
|
||||||
|
\end{subfigure}%
|
||||||
|
\begin{subfigure}[c]{0.4\textwidth}
|
||||||
|
\centering
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}[
|
||||||
|
domain=-4:4,
|
||||||
|
samples=100,
|
||||||
|
width=\textwidth,
|
||||||
|
height=0.5\textwidth,
|
||||||
|
ticks=none,
|
||||||
|
xlabel={$x$},
|
||||||
|
ylabel={$f_X(x)$}
|
||||||
|
]
|
||||||
|
\addplot+[mark=none, line width=1pt] {exp(-x^2)};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{subfigure}
|
||||||
|
\end{figure}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\end{document}
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user