Add fault tolerance slide
This commit is contained in:
parent
95631f90cf
commit
90f421fbfe
@ -27,7 +27,7 @@
|
|||||||
\usetikzlibrary{spy, external, intersections, positioning}
|
\usetikzlibrary{spy, external, intersections, positioning}
|
||||||
|
|
||||||
% \ifdefined\ishandout\else
|
% \ifdefined\ishandout\else
|
||||||
% \tikzexternalize
|
\tikzexternalize
|
||||||
% \fi
|
% \fi
|
||||||
|
|
||||||
\usepackage{pgfplots}
|
\usepackage{pgfplots}
|
||||||
@ -182,9 +182,9 @@
|
|||||||
\item Quantum computers represent information through
|
\item Quantum computers represent information through
|
||||||
correlations of qubits, not their values \\
|
correlations of qubits, not their values \\
|
||||||
directly \citereference{preskill_quantum_2018}
|
directly \citereference{preskill_quantum_2018}
|
||||||
\item We want to not disturb the quantum state but need to
|
\item Errors during quantum computation are inevitable
|
||||||
interact with the system $\rightarrow$ Protect the state
|
because quantum systems are fragile
|
||||||
with \ac{qec}
|
\item We want to interact with the quantum state but not disturb it
|
||||||
\item We employ more physical qubits to introduce
|
\item We employ more physical qubits to introduce
|
||||||
redundancy and use the resulting \emph{physical} state to
|
redundancy and use the resulting \emph{physical} state to
|
||||||
represent the \emph{logical} state
|
represent the \emph{logical} state
|
||||||
@ -243,8 +243,8 @@
|
|||||||
% much"
|
% much"
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item As mentioned earlier, \ac{qec} is actually able to
|
\item \Ac{qec} is actually able to protect the quantum state
|
||||||
protect the quantum state with all its correlations
|
with all its correlations
|
||||||
\item We have to consider phase flip errors in addition to
|
\item We have to consider phase flip errors in addition to
|
||||||
bit flip errors \citereference{roffe_quantum_2019}
|
bit flip errors \citereference{roffe_quantum_2019}
|
||||||
\vspace*{-10mm}
|
\vspace*{-10mm}
|
||||||
@ -345,13 +345,17 @@
|
|||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item We entangle the state with \emph{ancilla qubits} to
|
\item We entangle the state with \emph{ancilla qubits} to
|
||||||
perform syndrome measurements \citereference{nielsen_quantum_2010}
|
perform syndrome measurements \citereference{nielsen_quantum_2010}
|
||||||
|
\item \red{Implicitly introduce the concept of a quantum gate
|
||||||
|
by mentioning CNOT gates?}
|
||||||
|
\item \red{Mention that we can perform syndrome extraction
|
||||||
|
with just CNOTs and H? (and find citation)}
|
||||||
|
\item \red{Do I need to show what the syndrome extraction
|
||||||
|
circuitry for Z errors looks like?}
|
||||||
\item Example: The 3-qubit repetition code%
|
\item Example: The 3-qubit repetition code%
|
||||||
\footnote {
|
\footnote {
|
||||||
Note that, for simplicity, this chosen example is a
|
Note that, for simplicity, this chosen example is a
|
||||||
code that is not only able to correct X errors (bit flips)
|
code that is only able to correct X errors (bit flips)
|
||||||
} %
|
} %
|
||||||
\red{Do I need to show what the syndrome extraction
|
|
||||||
circuitry for Z errors looks like?}
|
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\vspace*{-10mm}
|
\vspace*{-10mm}
|
||||||
@ -372,7 +376,7 @@
|
|||||||
% tex-fmt: off
|
% tex-fmt: off
|
||||||
\Qcircuit @C=1em @R=.7em {
|
\Qcircuit @C=1em @R=.7em {
|
||||||
& & \ctrl{3} & \qw & \qw & \qw & \qw & \qw \\
|
& & \ctrl{3} & \qw & \qw & \qw & \qw & \qw \\
|
||||||
\ket{\psi}_\text{L} & & \qw & \ctrl{2} & \ctrl{3} & \qw & \qw & \qw \\
|
\ket{\psi} & & \qw & \ctrl{2} & \ctrl{3} & \qw & \qw & \qw \\
|
||||||
& & \qw & \qw & \qw & \ctrl{2} & \qw & \qw \\
|
& & \qw & \qw & \qw & \ctrl{2} & \qw & \qw \\
|
||||||
\ket{0}_{\text{A}_1} & & \targ & \targ & \qw & \qw & \meter & \\
|
\ket{0}_{\text{A}_1} & & \targ & \targ & \qw & \qw & \meter & \\
|
||||||
\ket{0}_{\text{A}_2} & & \qw & \qw & \targ & \targ & \meter &
|
\ket{0}_{\text{A}_2} & & \qw & \qw & \targ & \targ & \meter &
|
||||||
@ -391,7 +395,6 @@
|
|||||||
\addreferences
|
\addreferences
|
||||||
{nielsen_quantum_2010}
|
{nielsen_quantum_2010}
|
||||||
\stopreferences
|
\stopreferences
|
||||||
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
@ -405,23 +408,54 @@
|
|||||||
\begin{frame}
|
\begin{frame}
|
||||||
\frametitle{Fault Tolerance}
|
\frametitle{Fault Tolerance}
|
||||||
|
|
||||||
|
\vspace*{-18mm}
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Quantum gates are faulty $\rightarrow$ we need QEC \\
|
\item The quantum gates we use for syndrome extraction are
|
||||||
But we do QEC with faulty gates $\rightarrow$ we need
|
faulty themselves \\
|
||||||
fault tolerant QEC %
|
$\rightarrow$ We need \emph{fault-tolerant} \ac{qec}
|
||||||
\footnote{
|
\citereference{roffe_quantum_2019}
|
||||||
Designing fault-tolerant circuits using detector
|
\item A \ac{qec} procedure is said to be fault tolerant if it
|
||||||
error models - Gong et al, Section 4.1
|
can account for errors that occur at any location in the circuit
|
||||||
}
|
\item We have to modify the syndrome extraction circuitry to
|
||||||
\item We generally do multiple rounds of syndrome extraction
|
be fault tolerant (e.g., by using specially prepared
|
||||||
\item The Threshold theorem
|
multi-qubit states for each ancilla
|
||||||
\setcounter{footnote}{0}
|
\citereference{shor_fault-tolerant_1997})
|
||||||
\item Definition of fault tolerance \footnotemark
|
\item We generally perform multiple rounds of syndrome extraction
|
||||||
\item \red{Different approaches to fault tolerance?}
|
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
\vspace*{-3mm}
|
||||||
|
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\scalebox{0.6}{
|
||||||
|
\mbox{
|
||||||
|
% tex-fmt: off
|
||||||
|
\Qcircuit @C=1em @R=.7em {
|
||||||
|
& & \ctrl{3} & \qw & \qw & \qw & \qw & \qw & \ctrl{5} & \qw & \qw & \qw & \qw & \qw \\
|
||||||
|
\ket{\psi} & & \qw & \ctrl{2} & \ctrl{3} & \qw & \qw & \qw & \qw & \ctrl{4} & \ctrl{5} & \qw & \qw & \qw \\
|
||||||
|
& & \qw & \qw & \qw & \ctrl{2} & \qw & \qw & \qw & \qw & \qw & \ctrl{4} & \qw & \qw \\
|
||||||
|
\ket{0}_{\text{A}_1} & & \targ & \targ & \qw & \qw & \meter & & & & & & & \\
|
||||||
|
\ket{0}_{\text{A}_2} & & \qw & \qw & \targ & \targ & \meter & & & & & & & \\
|
||||||
|
& & & & & & \ket{0}_{\text{A}_3} & & \targ & \targ & \qw & \qw & \meter & \\
|
||||||
|
& & & & & & \ket{0}_{\text{A}_4} & & \qw & \qw & \targ & \targ & \meter & & \cdots
|
||||||
|
}
|
||||||
|
% tex-fmt: on
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
\caption{Multiple rounds of syndrome measurements for the
|
||||||
|
3-qubit repetition code}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
% \vspace*{-2mm}
|
||||||
|
|
||||||
|
\addreferences
|
||||||
|
{roffe_quantum_2019}
|
||||||
|
{shor_fault-tolerant_1997}
|
||||||
|
\stopreferences
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
% TODO: Where to we introduces the different kinds of noise models?
|
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
\frametitle{Noise models}
|
\frametitle{Noise models}
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user