diff --git a/src/midterm_presentation/main.tex b/src/midterm_presentation/main.tex index eb093b8..264bced 100644 --- a/src/midterm_presentation/main.tex +++ b/src/midterm_presentation/main.tex @@ -27,7 +27,7 @@ \usetikzlibrary{spy, external, intersections, positioning} % \ifdefined\ishandout\else -% \tikzexternalize +\tikzexternalize % \fi \usepackage{pgfplots} @@ -182,9 +182,9 @@ \item Quantum computers represent information through correlations of qubits, not their values \\ directly \citereference{preskill_quantum_2018} - \item We want to not disturb the quantum state but need to - interact with the system $\rightarrow$ Protect the state - with \ac{qec} + \item Errors during quantum computation are inevitable + because quantum systems are fragile + \item We want to interact with the quantum state but not disturb it \item We employ more physical qubits to introduce redundancy and use the resulting \emph{physical} state to represent the \emph{logical} state @@ -243,8 +243,8 @@ % much" \begin{itemize} - \item As mentioned earlier, \ac{qec} is actually able to - protect the quantum state with all its correlations + \item \Ac{qec} is actually able to protect the quantum state + with all its correlations \item We have to consider phase flip errors in addition to bit flip errors \citereference{roffe_quantum_2019} \vspace*{-10mm} @@ -345,13 +345,17 @@ \begin{itemize} \item We entangle the state with \emph{ancilla qubits} to perform syndrome measurements \citereference{nielsen_quantum_2010} + \item \red{Implicitly introduce the concept of a quantum gate + by mentioning CNOT gates?} + \item \red{Mention that we can perform syndrome extraction + with just CNOTs and H? (and find citation)} + \item \red{Do I need to show what the syndrome extraction + circuitry for Z errors looks like?} \item Example: The 3-qubit repetition code% \footnote { Note that, for simplicity, this chosen example is a - code that is not only able to correct X errors (bit flips) + code that is only able to correct X errors (bit flips) } % - \red{Do I need to show what the syndrome extraction - circuitry for Z errors looks like?} \end{itemize} \vspace*{-10mm} @@ -372,7 +376,7 @@ % tex-fmt: off \Qcircuit @C=1em @R=.7em { & & \ctrl{3} & \qw & \qw & \qw & \qw & \qw \\ - \ket{\psi}_\text{L} & & \qw & \ctrl{2} & \ctrl{3} & \qw & \qw & \qw \\ + \ket{\psi} & & \qw & \ctrl{2} & \ctrl{3} & \qw & \qw & \qw \\ & & \qw & \qw & \qw & \ctrl{2} & \qw & \qw \\ \ket{0}_{\text{A}_1} & & \targ & \targ & \qw & \qw & \meter & \\ \ket{0}_{\text{A}_2} & & \qw & \qw & \targ & \targ & \meter & @@ -391,7 +395,6 @@ \addreferences {nielsen_quantum_2010} \stopreferences - \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -405,23 +408,54 @@ \begin{frame} \frametitle{Fault Tolerance} + \vspace*{-18mm} + \begin{itemize} - \item Quantum gates are faulty $\rightarrow$ we need QEC \\ - But we do QEC with faulty gates $\rightarrow$ we need - fault tolerant QEC % - \footnote{ - Designing fault-tolerant circuits using detector - error models - Gong et al, Section 4.1 - } - \item We generally do multiple rounds of syndrome extraction - \item The Threshold theorem - \setcounter{footnote}{0} - \item Definition of fault tolerance \footnotemark - \item \red{Different approaches to fault tolerance?} + \item The quantum gates we use for syndrome extraction are + faulty themselves \\ + $\rightarrow$ We need \emph{fault-tolerant} \ac{qec} + \citereference{roffe_quantum_2019} + \item A \ac{qec} procedure is said to be fault tolerant if it + can account for errors that occur at any location in the circuit + \item We have to modify the syndrome extraction circuitry to + be fault tolerant (e.g., by using specially prepared + multi-qubit states for each ancilla + \citereference{shor_fault-tolerant_1997}) + \item We generally perform multiple rounds of syndrome extraction \end{itemize} + + \vspace*{-3mm} + + \begin{figure}[H] + \centering + \scalebox{0.6}{ + \mbox{ + % tex-fmt: off + \Qcircuit @C=1em @R=.7em { + & & \ctrl{3} & \qw & \qw & \qw & \qw & \qw & \ctrl{5} & \qw & \qw & \qw & \qw & \qw \\ + \ket{\psi} & & \qw & \ctrl{2} & \ctrl{3} & \qw & \qw & \qw & \qw & \ctrl{4} & \ctrl{5} & \qw & \qw & \qw \\ + & & \qw & \qw & \qw & \ctrl{2} & \qw & \qw & \qw & \qw & \qw & \ctrl{4} & \qw & \qw \\ + \ket{0}_{\text{A}_1} & & \targ & \targ & \qw & \qw & \meter & & & & & & & \\ + \ket{0}_{\text{A}_2} & & \qw & \qw & \targ & \targ & \meter & & & & & & & \\ + & & & & & & \ket{0}_{\text{A}_3} & & \targ & \targ & \qw & \qw & \meter & \\ + & & & & & & \ket{0}_{\text{A}_4} & & \qw & \qw & \targ & \targ & \meter & & \cdots + } + % tex-fmt: on + } + } + + \caption{Multiple rounds of syndrome measurements for the + 3-qubit repetition code} + \end{figure} + + % \vspace*{-2mm} + + \addreferences + {roffe_quantum_2019} + {shor_fault-tolerant_1997} + \stopreferences \end{frame} -% TODO: Where to we introduces the different kinds of noise models? \begin{frame} \frametitle{Noise models}