Change paragraphs; add TODO; change margins
This commit is contained in:
parent
3dd1bfd2db
commit
07448c37b9
@ -1,6 +1,6 @@
|
|||||||
\documentclass[dvipsnames]{article}
|
\documentclass[dvipsnames]{article}
|
||||||
|
|
||||||
\usepackage[a4paper,left=3cm,right=2cm,top=2.5cm,bottom=2.5cm]{geometry}
|
\usepackage[a4paper,left=3cm,right=3cm,top=2.5cm,bottom=2.5cm]{geometry}
|
||||||
\usepackage{float}
|
\usepackage{float}
|
||||||
\usepackage{amsmath}
|
\usepackage{amsmath}
|
||||||
\usepackage{amsfonts}
|
\usepackage{amsfonts}
|
||||||
@ -17,6 +17,7 @@
|
|||||||
style=ieee,
|
style=ieee,
|
||||||
sorting=nty,
|
sorting=nty,
|
||||||
]{biblatex}
|
]{biblatex}
|
||||||
|
\usepackage{todonotes}
|
||||||
|
|
||||||
\usetikzlibrary{calc, positioning}
|
\usetikzlibrary{calc, positioning}
|
||||||
|
|
||||||
@ -89,7 +90,6 @@ $E$ is an operator describing a possible error and $E
|
|||||||
\ket{\psi}_\text{L}$ is the resulting state after that error.
|
\ket{\psi}_\text{L}$ is the resulting state after that error.
|
||||||
By measuring the corresponding eigenvalue, we can determine if
|
By measuring the corresponding eigenvalue, we can determine if
|
||||||
$E\ket{\psi}_\text{L}$ lies in $\mathcal{C}$ or $\mathcal{F}$.
|
$E\ket{\psi}_\text{L}$ lies in $\mathcal{C}$ or $\mathcal{F}$.
|
||||||
|
|
||||||
To do this without directly measuring (and thus disturbing) the
|
To do this without directly measuring (and thus disturbing) the
|
||||||
logical state $\ket{\psi}_\text{L}$, we prepare an ancilla
|
logical state $\ket{\psi}_\text{L}$, we prepare an ancilla
|
||||||
qubit with state $\ket{0}_\text{A}$ and we entangle it with
|
qubit with state $\ket{0}_\text{A}$ and we entangle it with
|
||||||
@ -117,18 +117,21 @@ the ancilla qubit. Similarly, if $E \ket{\psi}_\text{L} \in
|
|||||||
\mathcal{F}$, we will deterministically measure $\ket{1}_\text{A}$.
|
\mathcal{F}$, we will deterministically measure $\ket{1}_\text{A}$.
|
||||||
In general, however, the resulting state of the three-qubit system will be a
|
In general, however, the resulting state of the three-qubit system will be a
|
||||||
superposition of the two cases.
|
superposition of the two cases.
|
||||||
|
|
||||||
Note that the expressions $P_\mathcal{C}$ and $P_\mathcal{F}$ above
|
Note that the expressions $P_\mathcal{C}$ and $P_\mathcal{F}$ above
|
||||||
essentially constitute projection operators onto $\mathcal{C}$ and
|
essentially constitute projection operators onto $\mathcal{C}$ and
|
||||||
$\mathcal{F}$. E.g., $P_\mathcal{C}$ will eliminate all
|
$\mathcal{F}$. E.g., $P_\mathcal{C}$ will eliminate all
|
||||||
components of a superposition state $E \ket{\psi}_\text{L}$ that lie
|
components of a superposition state $E \ket{\psi}_\text{L}$ that lie
|
||||||
in $\mathcal{F}$.
|
in $\mathcal{F}$.
|
||||||
|
|
||||||
By measuring the ancilla qubit, we collapse the overall state
|
By measuring the ancilla qubit, we collapse the overall state
|
||||||
into one of two configurations. In each of those configurations, $E
|
into one of two configurations. In each of those configurations, $E
|
||||||
\ket{\psi}_\text{L}$ is projected back onto either $\mathcal{C}$ or
|
\ket{\psi}_\text{L}$ is projected back onto either $\mathcal{C}$ or
|
||||||
$\mathcal{F}$. At the same time, because $Z_1Z_2 \ket{\psi}_\text{L}
|
$\mathcal{F}$. At the same time, because $Z_1Z_2 \ket{\psi}_\text{L}
|
||||||
= \ket{\psi}_\text{L}$, the projections leave the logical state
|
= \ket{\psi}_\text{L}$, the projections leave the logical state
|
||||||
$\ket{\psi}_\text{L}$ untouched. We have thus managed to determine
|
$\ket{\psi}_\text{L}$ untouched.
|
||||||
|
\todo{Explain that the collapse of the error superposition enables
|
||||||
|
the digitization of arbitrary error operations \cite{nielsen_quantum_2010}}
|
||||||
|
We have thus managed to determine
|
||||||
whether an error occurred without disturbing the encoded
|
whether an error occurred without disturbing the encoded
|
||||||
quantum information.
|
quantum information.
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user