From 07448c37b937fe2d4f9cd70455ad2f61f51d6e56 Mon Sep 17 00:00:00 2001 From: Andreas Tsouchlos Date: Wed, 19 Nov 2025 10:43:49 +0100 Subject: [PATCH] Change paragraphs; add TODO; change margins --- src/intro/main.tex | 11 +++++++---- 1 file changed, 7 insertions(+), 4 deletions(-) diff --git a/src/intro/main.tex b/src/intro/main.tex index 70c3971..3833502 100644 --- a/src/intro/main.tex +++ b/src/intro/main.tex @@ -1,6 +1,6 @@ \documentclass[dvipsnames]{article} -\usepackage[a4paper,left=3cm,right=2cm,top=2.5cm,bottom=2.5cm]{geometry} +\usepackage[a4paper,left=3cm,right=3cm,top=2.5cm,bottom=2.5cm]{geometry} \usepackage{float} \usepackage{amsmath} \usepackage{amsfonts} @@ -17,6 +17,7 @@ style=ieee, sorting=nty, ]{biblatex} +\usepackage{todonotes} \usetikzlibrary{calc, positioning} @@ -89,7 +90,6 @@ $E$ is an operator describing a possible error and $E \ket{\psi}_\text{L}$ is the resulting state after that error. By measuring the corresponding eigenvalue, we can determine if $E\ket{\psi}_\text{L}$ lies in $\mathcal{C}$ or $\mathcal{F}$. - To do this without directly measuring (and thus disturbing) the logical state $\ket{\psi}_\text{L}$, we prepare an ancilla qubit with state $\ket{0}_\text{A}$ and we entangle it with @@ -117,18 +117,21 @@ the ancilla qubit. Similarly, if $E \ket{\psi}_\text{L} \in \mathcal{F}$, we will deterministically measure $\ket{1}_\text{A}$. In general, however, the resulting state of the three-qubit system will be a superposition of the two cases. + Note that the expressions $P_\mathcal{C}$ and $P_\mathcal{F}$ above essentially constitute projection operators onto $\mathcal{C}$ and $\mathcal{F}$. E.g., $P_\mathcal{C}$ will eliminate all components of a superposition state $E \ket{\psi}_\text{L}$ that lie in $\mathcal{F}$. - By measuring the ancilla qubit, we collapse the overall state into one of two configurations. In each of those configurations, $E \ket{\psi}_\text{L}$ is projected back onto either $\mathcal{C}$ or $\mathcal{F}$. At the same time, because $Z_1Z_2 \ket{\psi}_\text{L} = \ket{\psi}_\text{L}$, the projections leave the logical state -$\ket{\psi}_\text{L}$ untouched. We have thus managed to determine +$\ket{\psi}_\text{L}$ untouched. +\todo{Explain that the collapse of the error superposition enables +the digitization of arbitrary error operations \cite{nielsen_quantum_2010}} +We have thus managed to determine whether an error occurred without disturbing the encoded quantum information.