Change paragraphs; add TODO; change margins
This commit is contained in:
parent
3dd1bfd2db
commit
07448c37b9
@ -1,6 +1,6 @@
|
||||
\documentclass[dvipsnames]{article}
|
||||
|
||||
\usepackage[a4paper,left=3cm,right=2cm,top=2.5cm,bottom=2.5cm]{geometry}
|
||||
\usepackage[a4paper,left=3cm,right=3cm,top=2.5cm,bottom=2.5cm]{geometry}
|
||||
\usepackage{float}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amsfonts}
|
||||
@ -17,6 +17,7 @@
|
||||
style=ieee,
|
||||
sorting=nty,
|
||||
]{biblatex}
|
||||
\usepackage{todonotes}
|
||||
|
||||
\usetikzlibrary{calc, positioning}
|
||||
|
||||
@ -89,7 +90,6 @@ $E$ is an operator describing a possible error and $E
|
||||
\ket{\psi}_\text{L}$ is the resulting state after that error.
|
||||
By measuring the corresponding eigenvalue, we can determine if
|
||||
$E\ket{\psi}_\text{L}$ lies in $\mathcal{C}$ or $\mathcal{F}$.
|
||||
|
||||
To do this without directly measuring (and thus disturbing) the
|
||||
logical state $\ket{\psi}_\text{L}$, we prepare an ancilla
|
||||
qubit with state $\ket{0}_\text{A}$ and we entangle it with
|
||||
@ -117,18 +117,21 @@ the ancilla qubit. Similarly, if $E \ket{\psi}_\text{L} \in
|
||||
\mathcal{F}$, we will deterministically measure $\ket{1}_\text{A}$.
|
||||
In general, however, the resulting state of the three-qubit system will be a
|
||||
superposition of the two cases.
|
||||
|
||||
Note that the expressions $P_\mathcal{C}$ and $P_\mathcal{F}$ above
|
||||
essentially constitute projection operators onto $\mathcal{C}$ and
|
||||
$\mathcal{F}$. E.g., $P_\mathcal{C}$ will eliminate all
|
||||
components of a superposition state $E \ket{\psi}_\text{L}$ that lie
|
||||
in $\mathcal{F}$.
|
||||
|
||||
By measuring the ancilla qubit, we collapse the overall state
|
||||
into one of two configurations. In each of those configurations, $E
|
||||
\ket{\psi}_\text{L}$ is projected back onto either $\mathcal{C}$ or
|
||||
$\mathcal{F}$. At the same time, because $Z_1Z_2 \ket{\psi}_\text{L}
|
||||
= \ket{\psi}_\text{L}$, the projections leave the logical state
|
||||
$\ket{\psi}_\text{L}$ untouched. We have thus managed to determine
|
||||
$\ket{\psi}_\text{L}$ untouched.
|
||||
\todo{Explain that the collapse of the error superposition enables
|
||||
the digitization of arbitrary error operations \cite{nielsen_quantum_2010}}
|
||||
We have thus managed to determine
|
||||
whether an error occurred without disturbing the encoded
|
||||
quantum information.
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user