Created gps_two_sources_animated and renamed std_dist to std_dev in all files

This commit is contained in:
Andreas Tsouchlos 2022-04-25 10:09:58 +02:00
parent 13f58e716b
commit ba6e7d4ce7
4 changed files with 79 additions and 8 deletions

View File

@ -0,0 +1,69 @@
import matplotlib.pyplot as plt
import numpy as np
from time import sleep
from matplotlib.animation import FuncAnimation
from display.dislpay_2d import Displayer
def run(kalman_filter_t):
# Simulation parameter definitions
n_iterations = 500
std_dev = [30, 0.5]
x0_actual = [50, 3]
x_actual = np.zeros([n_iterations, 2])
x_kalman = np.zeros([n_iterations, 2])
x_measurement = np.zeros([n_iterations, 2])
P_kalman = np.zeros([n_iterations, 2])
# Kalman Filter parameter definition
x0 = [100, 50]
P0 = [[1000, 0], [0, 400]]
H = [[1, 0], [0, 1]]
Q = [[0.2, 0], [0, 2]]
F = [[1, 1], [0, 1]]
G = 0
R = [[std_dev[0]**2, 0], [0, std_dev[1]**2]]
x_actual[0] = x0_actual
x_kalman[0] = x0
# Simulation
f = kalman_filter_t(x0, P0, H, Q, F, G)
for i in range(1, n_iterations):
measurement = np.dot(F,x_actual[i-1]) + np.random.normal([0,0], std_dev)
f.step(measurement, R, 0)
x_actual[i] = np.dot(F, x_actual[i-1])
x_kalman[i] = f.x
x_measurement[i] = measurement
P_kalman[i] = [f.P[0,0], f.P[1,1]]
# Show results
def update(disp, t):
disp.move_object("measurement", [x_measurement[:, 0][t], 0])
disp.set_circle_radius("measurement", std_dev[0])
disp.move_object("estimate", [x_kalman[:, 0][t], 0])
disp.set_circle_radius("estimate", P_kalman[:,0][t])
disp.move_object("ground_truth", [x_actual[:, 0][t], 0])
disp.set_circle_radius("ground_truth", 0)
disp = Displayer(width=6, height=6, frame_interval=150)
disp.set_axis_limits(xlim=[0, 1000], ylim=[-500, 500])
disp.register_object("measurement", "red")
disp.register_object("estimate", "blue")
disp.register_object("ground_truth", "green")
disp.animate(n_steps=n_iterations, anim_callback=update)

View File

@ -28,7 +28,7 @@ def run(kalman_filter_t):
# Simulation parameter definitions
n_iterations = 500
std_dist = [30, 0.5]
std_dev = [30, 0.5]
x0_actual = [50, 3]
x_actual = np.zeros([n_iterations, 2])
@ -44,7 +44,7 @@ def run(kalman_filter_t):
Q = [[0.2, 0], [0, 2]]
F = [[1, 1], [0, 1]]
G = 0
R = [[std_dist[0]**2, 0], [0, std_dist[1]**2]]
R = [[std_dev[0]**2, 0], [0, std_dev[1]**2]]
x_actual[0] = x0_actual
x_kalman[0] = x0
@ -56,7 +56,7 @@ def run(kalman_filter_t):
for i in range(1, n_iterations):
measurement = np.dot(F,x_actual[i-1]) + np.random.normal([0,0], std_dist)
measurement = np.dot(F,x_actual[i-1]) + np.random.normal([0,0], std_dev)
f.step(measurement, R, 0)

View File

@ -10,7 +10,7 @@ def run(kalman_filter_t):
# Simulation parameter definitions
n_iterations = 500
std_dist = [30, 0.5]
std_dev = [30, 0.5]
x0_actual = [50, 3]
x_actual = np.zeros([n_iterations, 2])
@ -27,7 +27,7 @@ def run(kalman_filter_t):
Q = [[0.2, 0], [0, 2]]
F = [[1, 1], [0, 1]]
G = 0
R = [[std_dist[0]**2, 0], [0, std_dist[1]**2]]
R = [[std_dev[0]**2, 0], [0, std_dev[1]**2]]
x_actual[0] = x0_actual
x_kalman[0] = x0
@ -39,7 +39,7 @@ def run(kalman_filter_t):
for i in range(1, n_iterations):
measurement = np.dot(F,x_actual[i-1]) + np.random.normal([0,0], std_dist)
measurement = np.dot(F,x_actual[i-1]) + np.random.normal([0,0], std_dev)
f.step(measurement, R, 0)
@ -53,7 +53,7 @@ def run(kalman_filter_t):
def update(disp, t):
disp.move_object("measurement", [x_measurement[:, 0][t], 0])
disp.set_circle_radius("measurement", std_dist[0])
disp.set_circle_radius("measurement", std_dev[0])
disp.move_object("estimate", [x_kalman[:, 0][t], 0])
disp.set_circle_radius("estimate", P_kalman[:,0][t])
disp.move_object("ground_truth", [x_actual[:, 0][t], 0])

View File

@ -1,13 +1,15 @@
from examples import gps_measurement as gps
from examples import second_order_system as sos
from examples import second_order_system_animated as sos_anim
from examples import gps_two_sources_animated as gps_ts_anim
from filter.kalman_filter import LinearKalmanFilter
def main():
#gps.run(LinearKalmanFilter)
#sos.run(LinearKalmanFilter)
sos_anim.run(LinearKalmanFilter)
#sos_anim.run(LinearKalmanFilter)
gps_ts_anim.run(LinearKalmanFilter)
if __name__ == '__main__':