Doc update
This commit is contained in:
parent
5c060088e0
commit
94b3619487
@ -1,6 +1,8 @@
|
|||||||
# Homotopy Continuation
|
# Homotopy Continuation
|
||||||
|
|
||||||
### Introduction
|
## Introduction
|
||||||
|
|
||||||
|
### Overview
|
||||||
|
|
||||||
The aim of a homotopy method consists in solving a system of N nonlinear
|
The aim of a homotopy method consists in solving a system of N nonlinear
|
||||||
equations in N variables \[1, p.1\]:
|
equations in N variables \[1, p.1\]:
|
||||||
@ -85,6 +87,26 @@ between successive points produced by the iterations can be used as a criterion
|
|||||||
for convergence. Of course, if the iterations fail to converge, one must go
|
for convergence. Of course, if the iterations fail to converge, one must go
|
||||||
back to adjust the step size for the Euler’s predictor." [2, p.130]
|
back to adjust the step size for the Euler’s predictor." [2, p.130]
|
||||||
|
|
||||||
|
## Application to Channel Decoding
|
||||||
|
|
||||||
|
We can describe the decoding problem using the code constraint polynomial [3]
|
||||||
|
|
||||||
|
$$
|
||||||
|
h(\bm{x}) = \underbrace{\sum_{i=1}^{n}\left(1-x_i^2\right)^2}_{\text{Bipolar constraint}} + \underbrace{\sum_{j=1}^{m}\left(1 - \left(\prod_{i\in A(j)}x_i\right)\right)^2}_{\text{Parity constraint}},
|
||||||
|
$$
|
||||||
|
|
||||||
|
where $A(j) = \left\{i \in [1:n]: H_{j,i} = 1\right\}$ represents the set of
|
||||||
|
variable nodes involved in parity check j. This polynomial consists of a set of
|
||||||
|
terms representing the bipolar constraint and a set of terms representing the
|
||||||
|
parity constraint. In a similar vein, we can define the following set of
|
||||||
|
polynomial equations to describe codewords:
|
||||||
|
|
||||||
|
$$
|
||||||
|
F = \left[\begin{array}{c}1 - x_1^2 \\ \vdots\\ 1 - x_n^2 \\ 1 - \prod_{i \in A(1)}x_i \\ \vdots\\ 1 - \prod_{i \in A(m)}x_i\end{array}\right] \overset{!}{=} \bm{0}.
|
||||||
|
$$
|
||||||
|
|
||||||
|
This is a problem we can solve using homotopy continuation.
|
||||||
|
|
||||||
______________________________________________________________________
|
______________________________________________________________________
|
||||||
|
|
||||||
## References
|
## References
|
||||||
@ -97,3 +119,7 @@ Philadelphia, PA 19104), 2003. doi: 10.1137/1.9780898719154.
|
|||||||
\[2\]: T. Chen and T.-Y. Li, “Homotopy continuation method for solving systems
|
\[2\]: T. Chen and T.-Y. Li, “Homotopy continuation method for solving systems
|
||||||
of nonlinear and polynomial equations,” Communications in Information and
|
of nonlinear and polynomial equations,” Communications in Information and
|
||||||
Systems, vol. 15, no. 2, pp. 119–307, 2015, doi: 10.4310/CIS.2015.v15.n2.a1.
|
Systems, vol. 15, no. 2, pp. 119–307, 2015, doi: 10.4310/CIS.2015.v15.n2.a1.
|
||||||
|
|
||||||
|
\[3\]: Wadayama, Tadashi, and Satoshi Takabe. "Proximal decoding for LDPC
|
||||||
|
codes." IEICE Transactions on Fundamentals of Electronics, Communications and
|
||||||
|
Computer Sciences 106.3 (2023): 359-367.
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user