From 94b361948792a8e3d4f813e92bbc19d8133b81e8 Mon Sep 17 00:00:00 2001 From: Andreas Tsouchlos Date: Thu, 27 Mar 2025 23:25:01 +0100 Subject: [PATCH] Doc update --- docs/general_idea.md | 28 +++++++++++++++++++++++++++- 1 file changed, 27 insertions(+), 1 deletion(-) diff --git a/docs/general_idea.md b/docs/general_idea.md index 73b6fbc..bcadd6f 100644 --- a/docs/general_idea.md +++ b/docs/general_idea.md @@ -1,6 +1,8 @@ # Homotopy Continuation -### Introduction +## Introduction + +### Overview The aim of a homotopy method consists in solving a system of N nonlinear equations in N variables \[1, p.1\]: @@ -85,6 +87,26 @@ between successive points produced by the iterations can be used as a criterion for convergence. Of course, if the iterations fail to converge, one must go back to adjust the step size for the Euler’s predictor." [2, p.130] +## Application to Channel Decoding + +We can describe the decoding problem using the code constraint polynomial [3] + +$$ +h(\bm{x}) = \underbrace{\sum_{i=1}^{n}\left(1-x_i^2\right)^2}_{\text{Bipolar constraint}} + \underbrace{\sum_{j=1}^{m}\left(1 - \left(\prod_{i\in A(j)}x_i\right)\right)^2}_{\text{Parity constraint}}, +$$ + +where $A(j) = \left\{i \in [1:n]: H_{j,i} = 1\right\}$ represents the set of +variable nodes involved in parity check j. This polynomial consists of a set of +terms representing the bipolar constraint and a set of terms representing the +parity constraint. In a similar vein, we can define the following set of +polynomial equations to describe codewords: + +$$ +F = \left[\begin{array}{c}1 - x_1^2 \\ \vdots\\ 1 - x_n^2 \\ 1 - \prod_{i \in A(1)}x_i \\ \vdots\\ 1 - \prod_{i \in A(m)}x_i\end{array}\right] \overset{!}{=} \bm{0}. +$$ + +This is a problem we can solve using homotopy continuation. + ______________________________________________________________________ ## References @@ -97,3 +119,7 @@ Philadelphia, PA 19104), 2003. doi: 10.1137/1.9780898719154. \[2\]: T. Chen and T.-Y. Li, “Homotopy continuation method for solving systems of nonlinear and polynomial equations,” Communications in Information and Systems, vol. 15, no. 2, pp. 119–307, 2015, doi: 10.4310/CIS.2015.v15.n2.a1. + +\[3\]: Wadayama, Tadashi, and Satoshi Takabe. "Proximal decoding for LDPC +codes." IEICE Transactions on Fundamentals of Electronics, Communications and +Computer Sciences 106.3 (2023): 359-367.