ba-thesis/sw/main.py

53 lines
1.4 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from decoders import proximal
from decoders import naive_soft_decision
from decoders import channel
from decoders import utility
def main():
# Hamming(7,4) code
G = np.array([[1, 1, 1, 0, 0, 0, 0],
[1, 0, 0, 1, 1, 0, 0],
[0, 1, 0, 1, 0, 1, 0],
[1, 1, 0, 1, 0, 0, 1]])
H = np.array([[1, 0, 1, 0, 1, 0, 1],
[0, 1, 1, 0, 0, 1, 1],
[0, 0, 0, 1, 1, 1, 1]])
encoder = channel.Encoder(G)
proximal_decoder = proximal.ProximalDecoder(H, K=100, gamma=0.01)
soft_decision_decoder = naive_soft_decision.SoftDecisionDecoder(G, H)
# Test decoder
k, n = G.shape
d = np.zeros(k) # All-zeros assumption
SNRs_sd, BERs_sd = utility.test_decoder(encoder=encoder,
decoder=soft_decision_decoder,
d=d,
SNRs=np.linspace(1, 7, 9),
target_bit_errors=500)
data = pd.DataFrame({"SNR": SNRs_sd, "BER_sd": BERs_sd})
# Plot results
ax = sns.lineplot(data=data, x="SNR", y="BER_sd")
ax.set(yscale="log")
ax.set_yticks([10e-5, 10e-4, 10e-3, 10e-2, 10e-1, 10e0])
# ax.set_ylim([10e-6, 10e0])
plt.show()
if __name__ == "__main__":
main()