Added Encoder class and modified interface of utility.test_decoder()
This commit is contained in:
parent
26fa791872
commit
2c620a77df
24
sw/decoders/channel.py
Normal file
24
sw/decoders/channel.py
Normal file
@ -0,0 +1,24 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
# TODO: Should the encoder be responsible for mapping the message from [0, 1]^n to [-1, 1]^n?
|
||||
# (ie. should the encoder perform modulation?)
|
||||
class Encoder:
|
||||
"""Class implementing an encoder for block codes.
|
||||
"""
|
||||
def __init__(self, G: np.array):
|
||||
"""Construct a new Encoder object.
|
||||
|
||||
:param G: Generator matrix
|
||||
"""
|
||||
self._G = G
|
||||
|
||||
def encode(self, d: np.array) -> np.array:
|
||||
"""Map a given dataword onto the corresponding codeword.
|
||||
|
||||
The returned codeword is mapped from [0, 1]^n onto [-1, 1]^n.
|
||||
|
||||
:param d: Dataword (element of [0, 1]^n)
|
||||
:return: Codeword (already element of [-1, 1]^n)
|
||||
"""
|
||||
return np.dot(d, self._G) * 2 - 1
|
||||
@ -43,26 +43,28 @@ def count_bit_errors(d: np.array, d_hat: np.array) -> int:
|
||||
return np.sum(d != d_hat)
|
||||
|
||||
|
||||
def test_decoder(decoder: typing.Any,
|
||||
def test_decoder(encoder: typing.Any,
|
||||
decoder: typing.Any,
|
||||
d: np.array,
|
||||
c: np.array,
|
||||
SNRs: typing.Sequence[float] = np.linspace(1, 4, 7),
|
||||
target_bit_errors=100,
|
||||
N_max=10000) \
|
||||
target_bit_errors: int = 100,
|
||||
N_max: int = 10000) \
|
||||
-> typing.Tuple[np.array, np.array]:
|
||||
"""Calculate the Bit Error Rate (BER) for a given decoder for a number of SNRs.
|
||||
|
||||
This function prints its progress to stdout.
|
||||
|
||||
:param encoder: Instance of the encoder used to generate the codeword to transmit
|
||||
:param decoder: Instance of the decoder to be tested
|
||||
:param d: Dataword (element of [0, 1]^n)
|
||||
:param c: Codeword whose transmission is to be simulated (element of [0, 1]^n)
|
||||
:param SNRs: List of SNRs for which the BER should be calculated
|
||||
:param target_bit_errors: Number of bit errors after which to stop the simulation
|
||||
:param N_max: Maximum number of iterations to perform for each SNR
|
||||
:return: Tuple of numpy arrays of the form (SNRs, BERs)
|
||||
"""
|
||||
x = c * 2 - 1 # Map the codeword from [0, 1]^n to [-1, 1]^n
|
||||
|
||||
x = encoder.encode(d)
|
||||
|
||||
BERs = []
|
||||
for SNR in tqdm(SNRs, desc="Calculating Bit-Error-Rates",
|
||||
position=0,
|
||||
@ -79,10 +81,11 @@ def test_decoder(decoder: typing.Any,
|
||||
# TODO: Is this a valid simulation? Can we just add AWGN to the codeword, ignoring and modulation and (
|
||||
# e.g. matched) filtering?
|
||||
y = add_awgn(x, SNR, signal_amp=np.sqrt(2))
|
||||
|
||||
y_hat = decoder.decode(y)
|
||||
|
||||
total_bit_errors += count_bit_errors(d, y_hat)
|
||||
total_bits += c.size
|
||||
total_bits += x.size
|
||||
|
||||
if total_bit_errors >= target_bit_errors:
|
||||
break
|
||||
|
||||
24
sw/main.py
24
sw/main.py
@ -5,6 +5,7 @@ import pandas as pd
|
||||
|
||||
from decoders import proximal
|
||||
from decoders import naive_soft_decision
|
||||
from decoders import channel
|
||||
from decoders import utility
|
||||
|
||||
|
||||
@ -20,20 +21,27 @@ def main():
|
||||
[0, 1, 1, 0, 0, 1, 1],
|
||||
[0, 0, 0, 1, 1, 1, 1]])
|
||||
|
||||
encoder = channel.Encoder(G)
|
||||
|
||||
proximal_decoder = proximal.ProximalDecoder(H, K=100, gamma=0.01)
|
||||
soft_decision_decoder = naive_soft_decision.SoftDecisionDecoder(G, H)
|
||||
|
||||
# Test decoder
|
||||
|
||||
d = np.array([0, 0, 0, 0])
|
||||
c = np.dot(G.transpose(), d) % 2
|
||||
k, n = G.shape
|
||||
d = np.zeros(k) # All-zeros assumption
|
||||
|
||||
print(f"Simulating with c = {c}")
|
||||
SNRs_sd, BERs_sd = utility.test_decoder(encoder=encoder,
|
||||
decoder=soft_decision_decoder,
|
||||
d=d,
|
||||
SNRs=np.linspace(1, 7, 9),
|
||||
target_bit_errors=500)
|
||||
|
||||
# decoder = proximal.ProximalDecoder(H, K=100, gamma=0.01)
|
||||
decoder = naive_soft_decision.SoftDecisionDecoder(G, H)
|
||||
SNRs, BERs = utility.test_decoder(decoder, d, c, SNRs=np.linspace(1, 7, 9), target_bit_errors=500, N_max=10000)
|
||||
data = pd.DataFrame({"SNR": SNRs_sd, "BER_sd": BERs_sd})
|
||||
|
||||
data = pd.DataFrame({"SNR": SNRs, "BER": BERs})
|
||||
# Plot results
|
||||
|
||||
ax = sns.lineplot(data=data, x="SNR", y="BER")
|
||||
ax = sns.lineplot(data=data, x="SNR", y="BER_sd")
|
||||
ax.set(yscale="log")
|
||||
ax.set_yticks([10e-5, 10e-4, 10e-3, 10e-2, 10e-1, 10e0])
|
||||
# ax.set_ylim([10e-6, 10e0])
|
||||
|
||||
Loading…
Reference in New Issue
Block a user