147 lines
3.7 KiB
Python
147 lines
3.7 KiB
Python
import numpy as np
|
|
import pandas as pd
|
|
import seaborn as sns
|
|
import matplotlib.pyplot as plt
|
|
import signal
|
|
from timeit import default_timer
|
|
from tqdm import tqdm
|
|
|
|
from utility import codes, noise, misc
|
|
from utility.simulation.simulators import GenericMultithreadedSimulator
|
|
|
|
# from cpp_modules.cpp_decoders import ProximalDecoder
|
|
from cpp_modules.cpp_decoders import ProximalDecoder_204_102 as ProximalDecoder
|
|
|
|
|
|
def count_bit_errors(d: np.array, d_hat: np.array) -> int:
|
|
return np.sum(d != d_hat)
|
|
|
|
|
|
def task_func(params):
|
|
signal.signal(signal.SIGINT, signal.SIG_IGN)
|
|
|
|
decoder, max_iterations, SNR, n, k = params
|
|
c = np.zeros(n)
|
|
x_bpsk = c + 1
|
|
|
|
total_bit_errors = 0
|
|
total_frame_errors = 0
|
|
dec_fails = 0
|
|
|
|
num_iterations = 0
|
|
|
|
for i in range(max_iterations):
|
|
x = noise.add_awgn(x_bpsk, SNR, n, k)
|
|
x_hat, k_max = decoder.decode(x)
|
|
|
|
bit_errors = count_bit_errors(x_hat, c)
|
|
if bit_errors > 0:
|
|
total_bit_errors += bit_errors
|
|
total_frame_errors += 1
|
|
|
|
num_iterations += 1
|
|
|
|
if k_max == -1:
|
|
dec_fails += 1
|
|
|
|
if total_frame_errors > 500:
|
|
break
|
|
|
|
BER = total_bit_errors / (num_iterations * n)
|
|
FER = total_frame_errors / num_iterations
|
|
DFR = dec_fails / (num_iterations + dec_fails)
|
|
|
|
return BER, FER, DFR, num_iterations
|
|
|
|
|
|
def simulate(H_file, SNRs, max_iterations, omega, K, gammas):
|
|
sim = GenericMultithreadedSimulator()
|
|
|
|
# Define fixed simulation params
|
|
|
|
H = codes.read_alist_file(f"res/{H_file}")
|
|
n_min_k, n = H.shape
|
|
k = n - n_min_k
|
|
|
|
# Define params different for each task
|
|
|
|
params = {}
|
|
for i, SNR in enumerate(SNRs):
|
|
for j, gamma in enumerate(gammas):
|
|
decoder = ProximalDecoder(H=H.astype('int32'), K=K, omega=omega,
|
|
gamma=gamma)
|
|
params[f"{i}_{j}"] = (decoder, max_iterations, SNR, n, k)
|
|
|
|
# Set up simulation
|
|
|
|
sim.task_params = params
|
|
sim.task_func = task_func
|
|
|
|
sim.start_or_continue()
|
|
|
|
return sim.get_current_results()
|
|
|
|
|
|
def reformat_data(results, SNRs, gammas):
|
|
data = {"BER": np.zeros(3 * 10), "FER": np.zeros(3 * 10),
|
|
"DFR": np.zeros(3 * 10), "gamma": np.zeros(3 * 10),
|
|
"SNR": np.zeros(3 * 10), "num_iter": np.zeros(3 * 10)}
|
|
|
|
for i, (key, (BER, FER, DFR, num_iter)) in enumerate(results.items()):
|
|
i_SNR, i_gamma = key.split('_')
|
|
data["BER"][i] = BER
|
|
data["FER"][i] = FER
|
|
data["DFR"][i] = DFR
|
|
data["num_iter"][i] = num_iter
|
|
data["SNR"][i] = SNRs[int(i_SNR)]
|
|
data["gamma"][i] = gammas[int(i_gamma)]
|
|
|
|
print(pd.DataFrame(data))
|
|
return pd.DataFrame(data)
|
|
|
|
|
|
def main():
|
|
# Set up simulation params
|
|
|
|
sim_name = "BER_FER_DFR"
|
|
|
|
# H_file = "96.3.965.alist"
|
|
H_file = "204.33.486.alist"
|
|
# H_file = "204.33.484.alist"
|
|
# H_file = "204.55.187.alist"
|
|
# H_file = "408.33.844.alist"
|
|
# H_file = "BCH_7_4.alist"
|
|
# H_file = "BCH_31_11.alist"
|
|
# H_file = "BCH_31_26.alist"
|
|
SNRs = np.arange(1, 6, 0.5)
|
|
|
|
max_iterations = 20000
|
|
# omega = 0.005
|
|
# K = 60
|
|
omega = 0.05
|
|
K = 60
|
|
gammas = [0.15, 0.01, 0.05]
|
|
|
|
# Run simulation
|
|
|
|
start_time = default_timer()
|
|
results = simulate(H_file, SNRs, max_iterations, omega, K, gammas)
|
|
end_time = default_timer()
|
|
|
|
print(f"duration: {end_time - start_time}")
|
|
|
|
df = reformat_data(results, SNRs, gammas)
|
|
|
|
df.to_csv(
|
|
f"sim_results/{sim_name}_{misc.slugify(H_file)}.csv")
|
|
|
|
sns.set_theme()
|
|
ax = sns.lineplot(data=df, x="SNR", y="BER", hue="gamma")
|
|
ax.set_yscale('log')
|
|
ax.set_ylim((5e-5, 2e-0))
|
|
plt.show()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|