37 lines
779 B
Python
37 lines
779 B
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
|
|
from decoders import proximal
|
|
from decoders import utility
|
|
|
|
|
|
def main():
|
|
# Hamming(7,4) code
|
|
|
|
G = np.array([[1, 1, 1, 0, 0, 0, 0],
|
|
[1, 0, 0, 1, 1, 0, 0],
|
|
[0, 1, 0, 1, 0, 1, 0],
|
|
[1, 1, 0, 1, 0, 0, 1]])
|
|
|
|
H = np.array([[1, 0, 1, 0, 1, 0, 1],
|
|
[0, 1, 1, 0, 0, 1, 1],
|
|
[0, 0, 0, 1, 1, 1, 1]])
|
|
|
|
# Test decoder
|
|
|
|
d = np.array([0, 1, 0, 1])
|
|
c = np.dot(G.transpose(), d) % 2
|
|
|
|
print(f"Simulating with c = {c}")
|
|
|
|
decoder = proximal.ProximalDecoder(H, K=1000)
|
|
SNRs, BERs = utility.test_decoder(decoder, c, N=100)
|
|
|
|
plt.stem(SNRs, BERs)
|
|
plt.show()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|