Finished initial (non-working) implementation of proximal decoder
This commit is contained in:
parent
accc318a77
commit
6444914296
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,2 +1,4 @@
|
||||
latex/build/
|
||||
latex/tmp/
|
||||
.idea
|
||||
__pycache__
|
||||
|
||||
2
sw/decoders/__init__.py
Normal file
2
sw/decoders/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
"""This package contains a number of different decoder implementations for LDPC codes
|
||||
"""
|
||||
86
sw/decoders/proximal.py
Normal file
86
sw/decoders/proximal.py
Normal file
@ -0,0 +1,86 @@
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
class ProximalDecoder:
|
||||
"""Class implementing the Proximal Decoding algorithm. See "Proximal Decoding for LDPC Codes" by Tadashi
|
||||
Wadayama, and Satoshi Takabe.
|
||||
"""
|
||||
def __init__(self, H: np.array, K: int = 10, step_size: float = 0.1, gamma: float = 0.05):
|
||||
"""Construct a new ProximalDecoder Object.
|
||||
|
||||
:param H: Parity Check Matrix
|
||||
:param K: Max number of iterations to perform when decoding
|
||||
:param step_size: Step size for the gradient descent process
|
||||
:param gamma: Positive constant. Arises in the approximation of the prior PDF
|
||||
"""
|
||||
self._H = H
|
||||
self._K = K
|
||||
self._step_size = step_size
|
||||
self._gamma = gamma
|
||||
|
||||
@staticmethod
|
||||
def _L_awgn(s: np.array, y: np.array) -> np.array:
|
||||
"""Variation of the negative log-likelihood for the special case of AWGN noise. See 4.1, p. 4."""
|
||||
return s - y
|
||||
|
||||
def _grad_h(self, x: np.array) -> np.array:
|
||||
"""Gradient of the code-constraint polynomial. See 2.3, p. 2."""
|
||||
# Calculate first term
|
||||
|
||||
result = 4 * (x**2 - 1) * x
|
||||
|
||||
# Calculate second term
|
||||
|
||||
for k, x_k in enumerate(x):
|
||||
# TODO: Perform this operation for each row simultaneously
|
||||
B_k = np.argwhere(self._H[:, k] == 1)
|
||||
B_k = B_k[:, 0] # Get rid of one layer of arrays
|
||||
|
||||
# TODO: Perform the summation with np.sum()
|
||||
sum_result = 0
|
||||
for i in B_k:
|
||||
# TODO: Perform this operation for each column simultaneously
|
||||
A_i = np.argwhere(self._H[i] == 1)
|
||||
A_i = A_i[:, 0] # Get rid of one layer of arrays
|
||||
|
||||
prod = 1
|
||||
for j in A_i:
|
||||
prod *= x[j]
|
||||
|
||||
sum_result += prod**2 - prod
|
||||
|
||||
term_2 = 2 / x_k * sum_result
|
||||
|
||||
result[k] += term_2
|
||||
|
||||
return np.array(result)
|
||||
|
||||
def _check_parity(self, y_hat: np.array) -> bool:
|
||||
"""Perform a parity check for a given codeword.
|
||||
|
||||
:param y_hat: codeword to be checked
|
||||
:return: True if the parity check passes, i.e. the codeword is valid. False otherwise
|
||||
"""
|
||||
syndrome = np.dot(self._H, y_hat) % 2
|
||||
return not np.any(syndrome)
|
||||
|
||||
def decode(self, y: np.array) -> np.array:
|
||||
"""Decode a received signal. The algorithm is detailed in 3.2, p.3.
|
||||
|
||||
This function assumes an AWGN channel.
|
||||
|
||||
:param y: Vector of received values
|
||||
:return: Most probably sent symbol
|
||||
"""
|
||||
s = 0
|
||||
x_hat = 0
|
||||
for k in range(self._K):
|
||||
r = s - self._step_size * self._L_awgn(s, y)
|
||||
s = r - self._gamma * self._grad_h(r)
|
||||
x_hat = (np.sign(s) == 1) * 1
|
||||
|
||||
if self._check_parity(x_hat):
|
||||
break
|
||||
|
||||
return x_hat
|
||||
80
sw/decoders/utility.py
Normal file
80
sw/decoders/utility.py
Normal file
@ -0,0 +1,80 @@
|
||||
"""This file contains various utility functions that can be used in combination with the decoders.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import typing
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def _get_noise_amp_from_SNR(SNR: float, signal_amp: float = 1) -> float:
|
||||
"""Calculate the amplitude of the noise from an SNR and the signal amplitude
|
||||
|
||||
:param SNR: Signal-to-Noise-Ratio in dB
|
||||
:param signal_amp: Signal Amplitude (linear)
|
||||
:return: Noise Amplitude (linear)
|
||||
"""
|
||||
SNR_linear = 10 ** (SNR / 10)
|
||||
noise_amp = (1 / np.sqrt(SNR_linear)) * signal_amp
|
||||
|
||||
return noise_amp
|
||||
|
||||
|
||||
def add_awgn(c: np.array, SNR: float) -> np.array:
|
||||
"""Add Additive White Gaussian Noise to a data vector. As this function adds random noise to the input,
|
||||
the output changes, even if it is called multiple times with the same input.
|
||||
|
||||
:param c: Binary vector representing the data to be transmitted
|
||||
:param SNR: Signal-to-Noise-Ratio in dB
|
||||
:return: Data vector with added noise
|
||||
"""
|
||||
noise_amp = _get_noise_amp_from_SNR(SNR, signal_amp=1)
|
||||
y = c + np.random.normal(scale=noise_amp, size=c.size)
|
||||
return y
|
||||
|
||||
|
||||
def count_bit_errors(d: np.array, d_hat: np.array) -> int:
|
||||
"""Count the number of wrong bits in a decoded codeword.
|
||||
|
||||
:param d: Originally sent data
|
||||
:param d_hat: Received data
|
||||
:return: Number of bit errors
|
||||
"""
|
||||
return np.sum(d != d_hat)
|
||||
|
||||
|
||||
def test_decoder(decoder: typing.Any,
|
||||
c: np.array,
|
||||
SNRs: typing.Sequence[float] = np.linspace(1, 4, 7),
|
||||
N=10000) \
|
||||
-> typing.Tuple[np.array, np.array]:
|
||||
"""Calculate the Bit Error Rate (BER) for a given decoder for a number of SNRs.
|
||||
|
||||
This function prints it's progress to stdout
|
||||
|
||||
:param decoder: Instance of the decoder to be tested
|
||||
:param c: Codeword whose transmission is to be simulated
|
||||
:param SNRs: List of SNRs for which the BER should be calculated
|
||||
:param N: Number of iterations to perform for each SNR
|
||||
:return: Tuple of numpy arrays of the form (SNRs, BERs)
|
||||
"""
|
||||
BERs = []
|
||||
for SNR in tqdm(SNRs, desc="Calculating Bit-Error-Rates",
|
||||
position=0,
|
||||
bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}"):
|
||||
|
||||
total_bit_errors = 0
|
||||
|
||||
for n in tqdm(range(N), desc=f"Simulating for SNR = {SNR} dB",
|
||||
position=1,
|
||||
leave=False,
|
||||
bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}"):
|
||||
|
||||
y = add_awgn(c, SNR)
|
||||
y_hat = decoder.decode(y)
|
||||
|
||||
total_bit_errors += count_bit_errors(c, y_hat)
|
||||
|
||||
total_bits = c.size * N
|
||||
BERs.append(total_bit_errors / total_bits)
|
||||
|
||||
return np.array(SNRs), np.array(BERs)
|
||||
36
sw/main.py
Normal file
36
sw/main.py
Normal file
@ -0,0 +1,36 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
|
||||
from decoders import proximal
|
||||
from decoders import utility
|
||||
|
||||
|
||||
def main():
|
||||
# Hamming(7,4) code
|
||||
|
||||
G = np.array([[1, 1, 1, 0, 0, 0, 0],
|
||||
[1, 0, 0, 1, 1, 0, 0],
|
||||
[0, 1, 0, 1, 0, 1, 0],
|
||||
[1, 1, 0, 1, 0, 0, 1]])
|
||||
|
||||
H = np.array([[1, 0, 1, 0, 1, 0, 1],
|
||||
[0, 1, 1, 0, 0, 1, 1],
|
||||
[0, 0, 0, 1, 1, 1, 1]])
|
||||
|
||||
# Test decoder
|
||||
|
||||
d = np.array([0, 1, 0, 1])
|
||||
c = np.dot(G.transpose(), d) % 2
|
||||
|
||||
print(f"Simulating with c = {c}")
|
||||
|
||||
decoder = proximal.ProximalDecoder(H, K=1000)
|
||||
SNRs, BERs = utility.test_decoder(decoder, c, N=100)
|
||||
|
||||
plt.stem(SNRs, BERs)
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
0
sw/test/__init__.py
Normal file
0
sw/test/__init__.py
Normal file
55
sw/test/test_proximal.py
Normal file
55
sw/test/test_proximal.py
Normal file
@ -0,0 +1,55 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from decoders import proximal
|
||||
|
||||
|
||||
class CheckParityTestCase(unittest.TestCase):
|
||||
"""Test case for the check_parity function."""
|
||||
def test_check_parity(self):
|
||||
# Hamming(7,4) code
|
||||
G = np.array([[1, 1, 1, 0, 0, 0, 0],
|
||||
[1, 0, 0, 1, 1, 0, 0],
|
||||
[0, 1, 0, 1, 0, 1, 0],
|
||||
[1, 1, 0, 1, 0, 0, 1]])
|
||||
H = np.array([[1, 0, 1, 0, 1, 0, 1],
|
||||
[0, 1, 1, 0, 0, 1, 1],
|
||||
[0, 0, 0, 1, 1, 1, 1]])
|
||||
|
||||
decoder = proximal.ProximalDecoder(H)
|
||||
|
||||
d1 = np.array([0, 1, 0, 1])
|
||||
c1 = np.dot(np.transpose(G), d1) % 2
|
||||
|
||||
d2 = np.array([0, 0, 0, 0])
|
||||
c2 = np.dot(np.transpose(G), d2) % 2
|
||||
|
||||
d3 = np.array([1, 1, 1, 1])
|
||||
c3 = np.dot(np.transpose(G), d3) % 2
|
||||
|
||||
invalid_codeword = np.array([0, 1, 1, 0, 1, 1, 1])
|
||||
|
||||
self.assertEqual(decoder._check_parity(c1), True)
|
||||
self.assertEqual(decoder._check_parity(c2), True)
|
||||
self.assertEqual(decoder._check_parity(c3), True)
|
||||
self.assertEqual(decoder._check_parity(invalid_codeword), False)
|
||||
|
||||
|
||||
class GradientTestCase(unittest.TestCase):
|
||||
"""Test case for the calculation of the gradient of the code-constraint-polynomial"""
|
||||
def test_grad_h(self):
|
||||
H = np.array([[1, 0, 1],
|
||||
[0, 1, 0]])
|
||||
x = np.array([2, 3, 4])
|
||||
|
||||
decoder = proximal.ProximalDecoder(H)
|
||||
grad = decoder._grad_h(x)
|
||||
|
||||
expected = 4 * (x**2 - 1)*x + 2 / x * np.array([0, 2, 0])
|
||||
|
||||
print(f"expected: {expected}")
|
||||
|
||||
self.assertEqual(np.array_equal(grad, expected), True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
40
sw/test/test_utility.py
Normal file
40
sw/test/test_utility.py
Normal file
@ -0,0 +1,40 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from decoders import utility
|
||||
|
||||
|
||||
class CountBitErrorsTestCase(unittest.TestCase):
|
||||
"""Test case for bit error counting."""
|
||||
def test_count_bit_errors(self):
|
||||
d1 = np.array([0, 0, 0, 0])
|
||||
y_hat1 = np.array([0, 1, 0, 1])
|
||||
|
||||
d2 = np.array([0, 0, 0, 0])
|
||||
y_hat2 = np.array([0, 0, 0, 0])
|
||||
|
||||
d3 = np.array([0, 0, 0, 0])
|
||||
y_hat3 = np.array([1, 1, 1, 1])
|
||||
|
||||
self.assertEqual(utility.count_bit_errors(d1, y_hat1), 2)
|
||||
self.assertEqual(utility.count_bit_errors(d2, y_hat2), 0)
|
||||
self.assertEqual(utility.count_bit_errors(d3, y_hat3), 4)
|
||||
|
||||
|
||||
class NoiseAmpFromSNRTestCase(unittest.TestCase):
|
||||
"""Test case for noise amplitude calculation"""
|
||||
def test_get_noise_amp_from_SNR(self):
|
||||
SNR1 = 0
|
||||
SNR2 = 6
|
||||
SNR3 = 20
|
||||
SNR4 = -20
|
||||
SNR5 = 60
|
||||
|
||||
self.assertEqual(utility._get_noise_amp_from_SNR(SNR1, signal_amp=1), 1)
|
||||
self.assertAlmostEqual(utility._get_noise_amp_from_SNR(SNR2, signal_amp=1), 0.5, places=2)
|
||||
self.assertEqual(utility._get_noise_amp_from_SNR(SNR3, signal_amp=1), 0.1)
|
||||
self.assertEqual(utility._get_noise_amp_from_SNR(SNR4, signal_amp=1), 10)
|
||||
self.assertEqual(utility._get_noise_amp_from_SNR(SNR5, signal_amp=2), 0.002)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
Loading…
Reference in New Issue
Block a user