108 lines
2.9 KiB
Python
108 lines
2.9 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
import pandas as pd
|
|
import typing
|
|
from pathlib import Path
|
|
import os
|
|
from itertools import chain
|
|
from timeit import default_timer
|
|
|
|
from decoders import proximal, naive_soft_decision
|
|
from utility import simulations, encoders, codes
|
|
|
|
|
|
def test_decoders(G, decoders: typing.List) -> pd.DataFrame:
|
|
k, n = G.shape
|
|
x = np.zeros(n) # All-zeros assumption
|
|
|
|
SNRs = np.linspace(1, 8, 8)
|
|
data = pd.DataFrame({"SNR": SNRs})
|
|
|
|
start_time = default_timer()
|
|
|
|
for decoder_name in decoders:
|
|
decoder = decoders[decoder_name]
|
|
_, BERs_sd = simulations.test_decoder(x,
|
|
decoder=decoder,
|
|
SNRs=SNRs,
|
|
target_bit_errors=100,
|
|
N_max=30000)
|
|
|
|
data[f"BER_{decoder_name}"] = BERs_sd
|
|
|
|
stop_time = default_timer()
|
|
|
|
print(f"Elapsed time: {stop_time-start_time:.2f}s")
|
|
|
|
return data
|
|
|
|
|
|
# TODO: Fix spacing between axes and margins
|
|
def plot_results():
|
|
results_dir = "sim_results"
|
|
|
|
code_paths = {}
|
|
for file in os.listdir(results_dir):
|
|
if file.endswith(".csv"):
|
|
code_paths[file.replace(".csv", "")] = os.path.join(results_dir, file)
|
|
|
|
sns.set_theme()
|
|
|
|
fig, axes = plt.subplots(2, len(code_paths) // 2, figsize=(12, 6))
|
|
fig.suptitle("Bit-Error-Rates of various decoders for different codes")
|
|
|
|
axes = list(chain.from_iterable(axes))
|
|
|
|
for i, code in enumerate(code_paths):
|
|
data = pd.read_csv(code_paths[code])
|
|
|
|
column_names = [column for column in data.columns.values.tolist()
|
|
if column.startswith("BER")]
|
|
|
|
ax = axes[i]
|
|
|
|
for column in column_names:
|
|
sns.lineplot(ax=ax, data=data, x="SNR", y=column, label=column.lstrip("BER_"))
|
|
|
|
ax.set_title(code)
|
|
ax.set(yscale="log")
|
|
ax.set_xlabel("SNR")
|
|
ax.set_ylabel("BER")
|
|
ax.set_yticks([10e-5, 10e-4, 10e-3, 10e-2, 10e-1, 10e0])
|
|
ax.legend()
|
|
|
|
plt.show()
|
|
|
|
|
|
def main():
|
|
Path("sim_results").mkdir(parents=True, exist_ok=True)
|
|
|
|
used_codes = [
|
|
"Hamming_7_4",
|
|
"Golay_24_12",
|
|
# "BCH_31_16",
|
|
# "BCH_31_21",
|
|
# "BCH_63_16",
|
|
]
|
|
|
|
for used_code in used_codes:
|
|
G = codes.Gs[used_code]
|
|
H = codes.get_systematic_H(G)
|
|
|
|
decoders = {
|
|
"naive_soft_decision": naive_soft_decision.SoftDecisionDecoder(G, H),
|
|
"proximal_0_01": proximal.ProximalDecoder(H, K=100, gamma=0.01),
|
|
"proximal_0_05": proximal.ProximalDecoder(H, K=100, gamma=0.05),
|
|
"proximal_0_15": proximal.ProximalDecoder(H, K=100, gamma=0.15),
|
|
}
|
|
|
|
data = test_decoders(G, decoders)
|
|
data.to_csv(f"sim_results/{used_code}.csv")
|
|
|
|
plot_results()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|