Now calculating the error rate based on the codewrords, not datawords

This commit is contained in:
Andreas Tsouchlos 2022-11-08 20:03:48 +01:00
parent 4e0fcbcec8
commit 3a178f2d35
4 changed files with 32 additions and 36 deletions

View File

@ -11,7 +11,7 @@ class SoftDecisionDecoder:
"""
# TODO: Is 'R' actually called 'decoding matrix'?
def __init__(self, G: np.array, H: np.array, R: np.array):
def __init__(self, G: np.array, H: np.array):
"""Construct a new SoftDecisionDecoder object.
:param G: Generator matrix
@ -20,9 +20,8 @@ class SoftDecisionDecoder:
"""
self._G = G
self._H = H
self._R = R
self._datawords, self._codewords = self._gen_codewords()
self._codewords_bpsk = self._codewords * 2 - 1 # The codewords, but mapped to [-1, 1]^n
self._codewords_bpsk = 1 - 2 * self._codewords # The codewords, but mapped to [-1, 1]^n
def _gen_codewords(self) -> np.array:
"""Generate a list of all possible codewords.
@ -43,7 +42,7 @@ class SoftDecisionDecoder:
def decode(self, y: np.array) -> np.array:
"""Decode a received signal.
This function assumes a BPSK-like modulated signal ([-1, 1]^n instead of [0, 1]^n).
This function assumes a BPSK modulated signal.
:param y: Vector of received values. (y = x + w, where 'x' is element of [-1, 1]^n
and 'w' is noise)
@ -51,4 +50,4 @@ class SoftDecisionDecoder:
"""
correlations = np.dot(self._codewords_bpsk, y)
return np.dot(self._R, self._codewords[numpy.argmax(correlations)])
return self._codewords[numpy.argmax(correlations)]

View File

@ -8,7 +8,7 @@ class ProximalDecoder:
"""
# TODO: Is 'R' actually called 'decoding matrix'?
def __init__(self, H: np.array, R: np.array, K: int = 100, step_size: float = 0.1,
def __init__(self, H: np.array, K: int = 100, step_size: float = 0.1,
gamma: float = 0.05, eta: float = 1.5):
"""Construct a new ProximalDecoder Object.
@ -20,7 +20,6 @@ class ProximalDecoder:
:param eta: Positive constant slightly larger than one. See 3.2, p. 3
"""
self._H = H
self._R = R
self._K = K
self._step_size = step_size
self._gamma = gamma
@ -51,7 +50,6 @@ class ProximalDecoder:
return result
# TODO: Is the 'projection onto [-eta, eta]' actually just clipping?
def _projection(self, x):
"""Project a vector onto [-eta, eta]^n in order to avoid numerical instability.
Detailed in 3.2, p. 3 (Equation (15)).
@ -73,12 +71,11 @@ class ProximalDecoder:
def decode(self, y: np.array) -> np.array:
"""Decode a received signal. The algorithm is detailed in 3.2, p.3.
This function assumes a BPSK-like modulated signal ([-1, 1]^n instead of [0, 1]^n)
and an AWGN channel.
This function assumes a BPSK modulated signal and an AWGN channel.
:param y: Vector of received values. (y = x + w, where 'x' is element of [-1, 1]^n
and 'w' is noise)
:return: Most probably sent dataword (element of [0, 1]^k)
:return: Most probably sent codeword (element of [0, 1]^k)
"""
s = np.zeros(self._n)
x_hat = np.zeros(self._n)
@ -89,9 +86,9 @@ class ProximalDecoder:
s = self._projection(s) # Equation (15)
x_hat = np.sign(s)
x_hat = (x_hat == 1) * 1 # Map the codeword from [-1, 1]^n to [0, 1]^n
x_hat = (x_hat == -1) * 1 # Map the codeword from [-1, 1]^n to [0, 1]^n
if self._check_parity(x_hat):
break
return np.dot(self._R, x_hat)
return x_hat

View File

@ -6,29 +6,35 @@ import typing
from pathlib import Path
import os
from itertools import chain
from timeit import default_timer
from decoders import proximal, naive_soft_decision
from utility import simulations, encoders, codes
def test_decoders(G, encoder, decoders: typing.List) -> pd.DataFrame:
def test_decoders(G, decoders: typing.List) -> pd.DataFrame:
k, n = G.shape
d = np.zeros(k) # All-zeros assumption
x = np.zeros(n) # All-zeros assumption
SNRs = np.linspace(1, 8, 8)
data = pd.DataFrame({"SNR": SNRs})
start_time = default_timer()
for decoder_name in decoders:
decoder = decoders[decoder_name]
_, BERs_sd = simulations.test_decoder(encoder=encoder,
_, BERs_sd = simulations.test_decoder(x,
decoder=decoder,
d=d,
SNRs=SNRs,
target_bit_errors=100,
N_max=30000)
data[f"BER_{decoder_name}"] = BERs_sd
stop_time = default_timer()
print(f"Elapsed time: {stop_time-start_time:.2f}s")
return data
@ -83,18 +89,16 @@ def main():
for used_code in used_codes:
G = codes.Gs[used_code]
H = codes.get_systematic_H(G)
R = codes.get_systematic_R(G)
encoder = encoders.Encoder(G)
decoders = {
"naive_soft_decision": naive_soft_decision.SoftDecisionDecoder(G, H, R),
"proximal_0_01": proximal.ProximalDecoder(H, R, K=100, gamma=0.01),
"proximal_0_05": proximal.ProximalDecoder(H, R, K=100, gamma=0.05),
"proximal_0_15": proximal.ProximalDecoder(H, R, K=100, gamma=0.15),
"naive_soft_decision": naive_soft_decision.SoftDecisionDecoder(G, H),
"proximal_0_01": proximal.ProximalDecoder(H, K=100, gamma=0.01),
"proximal_0_05": proximal.ProximalDecoder(H, K=100, gamma=0.05),
"proximal_0_15": proximal.ProximalDecoder(H, K=100, gamma=0.15),
}
# data = test_decoders(G, encoder, decoders)
# data.to_csv(f"sim_results/{used_code}.csv")
data = test_decoders(G, decoders)
data.to_csv(f"sim_results/{used_code}.csv")
plot_results()

View File

@ -19,27 +19,25 @@ def count_bit_errors(d: np.array, d_hat: np.array) -> int:
# TODO: Fix uses of n, k, a everywhere
def test_decoder(encoder: typing.Any,
def test_decoder(x: np.array,
decoder: typing.Any,
d: np.array,
SNRs: typing.Sequence[float] = np.linspace(1, 4, 7),
target_bit_errors: int = 100,
N_max: int = 10000) \
-> typing.Tuple[np.array, np.array]:
"""Calculate the Bit Error Rate (BER) for a given decoder for a number of SNRs.
This function prints its progress to stdout.
This function assumes the all-zeros assumption holds. Progress is printed to stdout.
:param encoder: Instance of the encoder used to generate the codeword to transmit
:param x: Codeword to be sent (Element of [0, 1]^n)
:param decoder: Instance of the decoder to be tested
:param d: Dataword (element of [0, 1]^n)
:param SNRs: List of SNRs for which the BER should be calculated
:param target_bit_errors: Number of bit errors after which to stop the simulation
:param N_max: Maximum number of iterations to perform for each SNR
:return: Tuple of numpy arrays of the form (SNRs, BERs)
"""
x = encoder.encode(d)
x_bpsk = 1 - 2 * x # Map x from [0, 1]^n to [-1, 1]^n
BERs = []
for SNR in tqdm(SNRs, desc="Calculating Bit-Error-Rates",
@ -55,14 +53,12 @@ def test_decoder(encoder: typing.Any,
leave=False,
bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}"):
# TODO: Is this a valid simulation? Can we just add AWGN to the codeword,
# ignoring and modulation and (e.g. matched) filtering?
y = noise.add_awgn(x, SNR, signal_amp=np.sqrt(2))
y = noise.add_awgn(x_bpsk, SNR, signal_amp=np.sqrt(2))
y_hat = decoder.decode(y)
total_bit_errors += count_bit_errors(d, y_hat)
total_bits += d.size
total_bit_errors += count_bit_errors(x, y_hat)
total_bits += x.size
if total_bit_errors >= target_bit_errors:
break