Added citations for different methods to solve lp decoding problem
This commit is contained in:
parent
c1097a59b7
commit
bfd0aeaf8b
@ -1,3 +1,10 @@
|
|||||||
|
\DeclareAcroEnding{gerund}{}{ing}
|
||||||
|
|
||||||
|
% For more info on custom endings see https://tex.stackexchange.com/a/268225
|
||||||
|
\NewAcroCommand\acg{m}{\acrogerund\UseAcroTemplate{first}{#1}}
|
||||||
|
\NewAcroCommand\acsg{m}{\acrogerund\UseAcroTemplate{short}{#1}}
|
||||||
|
\NewAcroCommand\aclg{m}{\acrogerund\UseAcroTemplate{long}{#1}}
|
||||||
|
|
||||||
%
|
%
|
||||||
% A
|
% A
|
||||||
%
|
%
|
||||||
@ -63,6 +70,15 @@
|
|||||||
long = maximum likelihood
|
long = maximum likelihood
|
||||||
}
|
}
|
||||||
|
|
||||||
|
%
|
||||||
|
% I
|
||||||
|
%
|
||||||
|
|
||||||
|
\DeclareAcronym{ILP} {
|
||||||
|
short = ILP,
|
||||||
|
long = integer linear program
|
||||||
|
}
|
||||||
|
|
||||||
%
|
%
|
||||||
% L
|
% L
|
||||||
%
|
%
|
||||||
@ -84,7 +100,8 @@
|
|||||||
|
|
||||||
\DeclareAcronym{LP}{
|
\DeclareAcronym{LP}{
|
||||||
short = LP,
|
short = LP,
|
||||||
long = linear programming
|
long = linear programming,
|
||||||
|
% long-gerund-form = linear programming
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@ -148,3 +148,36 @@
|
|||||||
url={https://web.stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf}
|
url={https://web.stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@INPROCEEDINGS{alp,
|
||||||
|
author={Taghavi, Mohammad H. and Siegel, Paul H.},
|
||||||
|
booktitle={2006 IEEE International Symposium on Information Theory},
|
||||||
|
title={Adaptive Linear Programming Decoding},
|
||||||
|
year={2006},
|
||||||
|
volume={},
|
||||||
|
number={},
|
||||||
|
pages={1374-1378},
|
||||||
|
doi={10.1109/ISIT.2006.262071}
|
||||||
|
}
|
||||||
|
|
||||||
|
@INPROCEEDINGS{interior_point,
|
||||||
|
author={Vontobel, Pascal O.},
|
||||||
|
booktitle={2008 Information Theory and Applications Workshop},
|
||||||
|
title={Interior-point algorithms for linear-programming decoding},
|
||||||
|
year={2008},
|
||||||
|
volume={},
|
||||||
|
number={},
|
||||||
|
pages={433-437},
|
||||||
|
doi={10.1109/ITA.2008.4601085}
|
||||||
|
}
|
||||||
|
|
||||||
|
@ARTICLE{pdd,
|
||||||
|
author={Zhao, Ming-Min and Shi, Qingjiang and Cai, Yunlong and Zhao, Min-Jian and Yu, Quan},
|
||||||
|
journal={IEEE Communications Letters},
|
||||||
|
title={Decoding Binary Linear Codes Using Penalty Dual Decomposition Method},
|
||||||
|
year={2019},
|
||||||
|
volume={23},
|
||||||
|
number={6},
|
||||||
|
pages={958-962},
|
||||||
|
doi={10.1109/LCOMM.2019.2911277}
|
||||||
|
}
|
||||||
|
|
||||||
|
|||||||
@ -175,8 +175,8 @@ which minimizes the objective function $g$.
|
|||||||
decoding and one, which is an approximation with a more manageable
|
decoding and one, which is an approximation with a more manageable
|
||||||
representation.
|
representation.
|
||||||
To solve the resulting linear program, various optimization methods can be
|
To solve the resulting linear program, various optimization methods can be
|
||||||
used.
|
used (see for example \cite{alp}, \cite{interior_point},
|
||||||
\todo{Citation needed}
|
\cite{efficient_lp_dec_admm}, \cite{pdd}).
|
||||||
|
|
||||||
They begin by looking at the \ac{ML} decoding problem%
|
They begin by looking at the \ac{ML} decoding problem%
|
||||||
\footnote{They assume that all codewords are equally likely to be transmitted,
|
\footnote{They assume that all codewords are equally likely to be transmitted,
|
||||||
@ -685,7 +685,6 @@ The resulting formulation of the relaxed optimization problem becomes:%
|
|||||||
\hspace{5mm}\forall j\in\mathcal{J}.
|
\hspace{5mm}\forall j\in\mathcal{J}.
|
||||||
\end{aligned} \label{eq:lp:relaxed_formulation}
|
\end{aligned} \label{eq:lp:relaxed_formulation}
|
||||||
\end{align}%
|
\end{align}%
|
||||||
\todo{Space before $\forall$?}
|
|
||||||
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
@ -730,7 +729,6 @@ In this form, the problem almost fits the \ac{ADMM} template described in sectio
|
|||||||
\ref{sec:theo:Optimization Methods}, except for the fact that there are multiple equality
|
\ref{sec:theo:Optimization Methods}, except for the fact that there are multiple equality
|
||||||
constraints $\boldsymbol{T}_j \tilde{\boldsymbol{c}} = \boldsymbol{z}_j$ and the
|
constraints $\boldsymbol{T}_j \tilde{\boldsymbol{c}} = \boldsymbol{z}_j$ and the
|
||||||
additional constraints $\boldsymbol{z}_j \in \mathcal{P}_{d_j} \, \forall\, j\in\mathcal{J}$.
|
additional constraints $\boldsymbol{z}_j \in \mathcal{P}_{d_j} \, \forall\, j\in\mathcal{J}$.
|
||||||
\todo{$\forall$ in text?}
|
|
||||||
The multiple constraints can be addressed by introducing additional terms in the
|
The multiple constraints can be addressed by introducing additional terms in the
|
||||||
augmented lagrangian:%
|
augmented lagrangian:%
|
||||||
%
|
%
|
||||||
@ -830,7 +828,6 @@ able to be handled at the same time.
|
|||||||
This can also be understood by interpreting the decoding process as a message-passing
|
This can also be understood by interpreting the decoding process as a message-passing
|
||||||
algorithm \cite[Sec. III. D.]{original_admm}, \cite[Sec. II. B.]{efficient_lp_dec_admm},
|
algorithm \cite[Sec. III. D.]{original_admm}, \cite[Sec. II. B.]{efficient_lp_dec_admm},
|
||||||
as is shown in figure \ref{fig:lp:message_passing}.%
|
as is shown in figure \ref{fig:lp:message_passing}.%
|
||||||
\todo{Explicitly specify sections?}%
|
|
||||||
%
|
%
|
||||||
\begin{figure}[H]
|
\begin{figure}[H]
|
||||||
\centering
|
\centering
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user