diff --git a/latex/thesis/abbreviations.tex b/latex/thesis/abbreviations.tex index 8aae37c..7a15983 100644 --- a/latex/thesis/abbreviations.tex +++ b/latex/thesis/abbreviations.tex @@ -1,3 +1,10 @@ +\DeclareAcroEnding{gerund}{}{ing} + +% For more info on custom endings see https://tex.stackexchange.com/a/268225 +\NewAcroCommand\acg{m}{\acrogerund\UseAcroTemplate{first}{#1}} +\NewAcroCommand\acsg{m}{\acrogerund\UseAcroTemplate{short}{#1}} +\NewAcroCommand\aclg{m}{\acrogerund\UseAcroTemplate{long}{#1}} + % % A % @@ -64,7 +71,16 @@ } % -%L +% I +% + +\DeclareAcronym{ILP} { + short = ILP, + long = integer linear program +} + +% +% L % \DeclareAcronym{LCLP}{ @@ -83,8 +99,9 @@ } \DeclareAcronym{LP}{ - short = LP, - long = linear programming + short = LP, + long = linear programming, +% long-gerund-form = linear programming } diff --git a/latex/thesis/bibliography.bib b/latex/thesis/bibliography.bib index e4effd3..6e41c7e 100644 --- a/latex/thesis/bibliography.bib +++ b/latex/thesis/bibliography.bib @@ -148,3 +148,36 @@ url={https://web.stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf} } +@INPROCEEDINGS{alp, + author={Taghavi, Mohammad H. and Siegel, Paul H.}, + booktitle={2006 IEEE International Symposium on Information Theory}, + title={Adaptive Linear Programming Decoding}, + year={2006}, + volume={}, + number={}, + pages={1374-1378}, + doi={10.1109/ISIT.2006.262071} +} + +@INPROCEEDINGS{interior_point, + author={Vontobel, Pascal O.}, + booktitle={2008 Information Theory and Applications Workshop}, + title={Interior-point algorithms for linear-programming decoding}, + year={2008}, + volume={}, + number={}, + pages={433-437}, + doi={10.1109/ITA.2008.4601085} +} + +@ARTICLE{pdd, + author={Zhao, Ming-Min and Shi, Qingjiang and Cai, Yunlong and Zhao, Min-Jian and Yu, Quan}, + journal={IEEE Communications Letters}, + title={Decoding Binary Linear Codes Using Penalty Dual Decomposition Method}, + year={2019}, + volume={23}, + number={6}, + pages={958-962}, + doi={10.1109/LCOMM.2019.2911277} +} + diff --git a/latex/thesis/chapters/decoding_techniques.tex b/latex/thesis/chapters/decoding_techniques.tex index f10ab02..9fc48f7 100644 --- a/latex/thesis/chapters/decoding_techniques.tex +++ b/latex/thesis/chapters/decoding_techniques.tex @@ -175,8 +175,8 @@ which minimizes the objective function $g$. decoding and one, which is an approximation with a more manageable representation. To solve the resulting linear program, various optimization methods can be -used. -\todo{Citation needed} +used (see for example \cite{alp}, \cite{interior_point}, +\cite{efficient_lp_dec_admm}, \cite{pdd}). They begin by looking at the \ac{ML} decoding problem% \footnote{They assume that all codewords are equally likely to be transmitted, @@ -685,7 +685,6 @@ The resulting formulation of the relaxed optimization problem becomes:% \hspace{5mm}\forall j\in\mathcal{J}. \end{aligned} \label{eq:lp:relaxed_formulation} \end{align}% -\todo{Space before $\forall$?} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -730,7 +729,6 @@ In this form, the problem almost fits the \ac{ADMM} template described in sectio \ref{sec:theo:Optimization Methods}, except for the fact that there are multiple equality constraints $\boldsymbol{T}_j \tilde{\boldsymbol{c}} = \boldsymbol{z}_j$ and the additional constraints $\boldsymbol{z}_j \in \mathcal{P}_{d_j} \, \forall\, j\in\mathcal{J}$. -\todo{$\forall$ in text?} The multiple constraints can be addressed by introducing additional terms in the augmented lagrangian:% % @@ -830,7 +828,6 @@ able to be handled at the same time. This can also be understood by interpreting the decoding process as a message-passing algorithm \cite[Sec. III. D.]{original_admm}, \cite[Sec. II. B.]{efficient_lp_dec_admm}, as is shown in figure \ref{fig:lp:message_passing}.% -\todo{Explicitly specify sections?}% % \begin{figure}[H] \centering