Changed variable names
This commit is contained in:
parent
fab8ab64ac
commit
3110137164
@ -20,7 +20,8 @@
|
|||||||
\begin{frame}[t]
|
\begin{frame}[t]
|
||||||
\frametitle{Presumptions: Channel \& Modulation}
|
\frametitle{Presumptions: Channel \& Modulation}
|
||||||
|
|
||||||
\tikzstyle{mapper} = [rectangle, minimum width=1.5cm, rounded corners=0.1cm, minimum height=0.7cm, text centered, draw=black, fill=KITgreen!80]
|
\tikzstyle{mapper} = [rectangle, minimum width=1.5cm, minimum height=0.7cm,
|
||||||
|
rounded corners=0.1cm, text centered, draw=black, fill=KITgreen!80]
|
||||||
\begin{figure}[htpb]
|
\begin{figure}[htpb]
|
||||||
\centering
|
\centering
|
||||||
|
|
||||||
@ -43,7 +44,8 @@
|
|||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item All simulations are performed with BPSK Modulation:
|
\item All simulations are performed with BPSK Modulation:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
x\left[ k \right] = \left( -1 \right)^{c\left[ k \right] }, \hspace{5mm} \boldsymbol{c} \in \mathbb{F}_2^n, \hspace{2mm} k\in \left\{ 1, \ldots, n \right\}
|
x\left[ k \right] = \left( -1 \right)^{c\left[ k \right] },
|
||||||
|
\hspace{5mm} \boldsymbol{c} \in \mathbb{F}_2^n, \hspace{2mm} k\in \left\{ 1, \ldots, n \right\}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\item The used channel model is AWGN:
|
\item The used channel model is AWGN:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
@ -68,16 +70,22 @@
|
|||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Codeword Polytope:
|
\item Codeword Polytope:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\text{poly}\left( \mathcal{C} \right) = \left\{ \sum_{\boldsymbol{y}\in\mathcal{C}} \lambda_{\boldsymbol{y}} \boldsymbol{y} : \lambda_{\boldsymbol{y}} \ge 0, \sum_{\boldsymbol{y}\in\mathcal{C}}\lambda_{\boldsymbol{y}} = 1 \right\}, \hspace{5mm} \lambda_{\boldsymbol{y}} \in \mathbb{R}
|
\text{poly}\left( \mathcal{C} \right) =
|
||||||
|
\left\{
|
||||||
|
\sum_{\boldsymbol{c}\in\mathcal{C}} \lambda_{\boldsymbol{c}} \boldsymbol{c}
|
||||||
|
: \lambda_{\boldsymbol{c}} \ge 0,
|
||||||
|
\sum_{\boldsymbol{c}\in\mathcal{C}}\lambda_{\boldsymbol{c}} = 1
|
||||||
|
\right\},
|
||||||
|
\hspace{5mm} \lambda_{\boldsymbol{c}} \in \mathbb{R}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\item Cost Function:
|
\item Cost Function:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\gamma_i = \log\left( \frac{P\left( Y=y_i | C=0 \right) }{P\left( Y=y_i | C=1 \right) } \right)
|
\gamma_i = \log\left( \frac{P\left( Y=y_i | C=0 \right) }{P\left( Y=y_i | C=1 \right) } \right),
|
||||||
|
\hspace{5mm} i = \left\{ 1, \ldots, n \right\}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\todo{Why is ``the cost of decoding $\hat{y} = 1$'' a valid choice for an overall cost function?}
|
|
||||||
\item LP Formulation:
|
\item LP Formulation:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
&\text{minimize } \sum_{i=1}^{n} \gamma_i f_i, \hspace{5mm} f_i = \sum_{\boldsymbol{y}} \lambda_{\boldsymbol{y}}y_i\\
|
&\text{minimize } \sum_{i=1}^{n} \gamma_i f_i \\
|
||||||
&\text{subject to } \boldsymbol{f}\in\text{poly}\left( \mathcal{C} \right)
|
&\text{subject to } \boldsymbol{f}\in\text{poly}\left( \mathcal{C} \right)
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user