From 311013716421f8f0ecedddadd1c222de8cb0ba81 Mon Sep 17 00:00:00 2001 From: Andreas Tsouchlos Date: Mon, 19 Dec 2022 14:16:12 +0100 Subject: [PATCH] Changed variable names --- .../sections/theoretical_background.tex | 20 +++++++++++++------ 1 file changed, 14 insertions(+), 6 deletions(-) diff --git a/latex/presentations/midterm/sections/theoretical_background.tex b/latex/presentations/midterm/sections/theoretical_background.tex index b058c53..8ea98a8 100644 --- a/latex/presentations/midterm/sections/theoretical_background.tex +++ b/latex/presentations/midterm/sections/theoretical_background.tex @@ -20,7 +20,8 @@ \begin{frame}[t] \frametitle{Presumptions: Channel \& Modulation} - \tikzstyle{mapper} = [rectangle, minimum width=1.5cm, rounded corners=0.1cm, minimum height=0.7cm, text centered, draw=black, fill=KITgreen!80] + \tikzstyle{mapper} = [rectangle, minimum width=1.5cm, minimum height=0.7cm, + rounded corners=0.1cm, text centered, draw=black, fill=KITgreen!80] \begin{figure}[htpb] \centering @@ -43,7 +44,8 @@ \begin{itemize} \item All simulations are performed with BPSK Modulation: \begin{align*} - x\left[ k \right] = \left( -1 \right)^{c\left[ k \right] }, \hspace{5mm} \boldsymbol{c} \in \mathbb{F}_2^n, \hspace{2mm} k\in \left\{ 1, \ldots, n \right\} + x\left[ k \right] = \left( -1 \right)^{c\left[ k \right] }, + \hspace{5mm} \boldsymbol{c} \in \mathbb{F}_2^n, \hspace{2mm} k\in \left\{ 1, \ldots, n \right\} \end{align*} \item The used channel model is AWGN: \begin{align*} @@ -68,16 +70,22 @@ \begin{itemize} \item Codeword Polytope: \begin{align*} - \text{poly}\left( \mathcal{C} \right) = \left\{ \sum_{\boldsymbol{y}\in\mathcal{C}} \lambda_{\boldsymbol{y}} \boldsymbol{y} : \lambda_{\boldsymbol{y}} \ge 0, \sum_{\boldsymbol{y}\in\mathcal{C}}\lambda_{\boldsymbol{y}} = 1 \right\}, \hspace{5mm} \lambda_{\boldsymbol{y}} \in \mathbb{R} + \text{poly}\left( \mathcal{C} \right) = + \left\{ + \sum_{\boldsymbol{c}\in\mathcal{C}} \lambda_{\boldsymbol{c}} \boldsymbol{c} + : \lambda_{\boldsymbol{c}} \ge 0, + \sum_{\boldsymbol{c}\in\mathcal{C}}\lambda_{\boldsymbol{c}} = 1 + \right\}, + \hspace{5mm} \lambda_{\boldsymbol{c}} \in \mathbb{R} \end{align*} \item Cost Function: \begin{align*} - \gamma_i = \log\left( \frac{P\left( Y=y_i | C=0 \right) }{P\left( Y=y_i | C=1 \right) } \right) + \gamma_i = \log\left( \frac{P\left( Y=y_i | C=0 \right) }{P\left( Y=y_i | C=1 \right) } \right), + \hspace{5mm} i = \left\{ 1, \ldots, n \right\} \end{align*} - \todo{Why is ``the cost of decoding $\hat{y} = 1$'' a valid choice for an overall cost function?} \item LP Formulation: \begin{align*} - &\text{minimize } \sum_{i=1}^{n} \gamma_i f_i, \hspace{5mm} f_i = \sum_{\boldsymbol{y}} \lambda_{\boldsymbol{y}}y_i\\ + &\text{minimize } \sum_{i=1}^{n} \gamma_i f_i \\ &\text{subject to } \boldsymbol{f}\in\text{poly}\left( \mathcal{C} \right) \end{align*} \end{itemize}