Reworked proximal decoding

This commit is contained in:
Andreas Tsouchlos 2023-02-19 14:01:49 +01:00
parent 51bec2b5a7
commit 252736ff31

View File

@ -34,8 +34,8 @@ The goal is to arrive at a formulation, where a certain objective function
$f$ has to be minimized under certain constraints:%
%
\begin{align*}
\text{minimize } f\left( \boldsymbol{c} \right)\\
\text{subject to $\boldsymbol{c} \in D$}
\text{minimize}\hspace{2mm} &f\left( \boldsymbol{c} \right)\\
\text{subject to}\hspace{2mm} &\boldsymbol{c} \in D
,\end{align*}%
%
where $D$ is the domain of values attainable for $c$ and represents the
@ -256,7 +256,7 @@ the transfer matrix would be $\boldsymbol{T}_j =
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix} $ (example taken from \cite[Sec. II, A]{efficient_lp_dec_admm})}%
\end{bmatrix} $ (example taken from \cite[Sec. II, A]{efficient_lp_dec_admm})}
(i.e. the relevant components of $\boldsymbol{c}$ for parity-check $j$)
and $\mathcal{P}_{d}$ is the \textit{check polytope}, the convex hull of all
binary vectors of length $d$ with even parity%
@ -274,6 +274,22 @@ Figures \ref{fig:dec:poly:local1} and \ref{fig:dec:poly:local2} show the local
codeword polytopes of each check node.
Their intersection, the relaxed codeword polytope $\overline{Q}$, is shown in
figure \ref{fig:dec:poly:relaxed}.
It can be seen, that the relaxed codeword polytope $\overline{Q}$ introduces
vertices with fractional values;
these represent erroneous non-codeword solutions to the linear program and
correspond to the so-called \textit{pseudocodewords} introduced in
\cite{feldman_paper}.
However, since for \ac{LDPC} codes $\overline{Q}$ scales linearly with $n$ instead of
exponentially, it is a lot more tractable for practical applications.
The resulting formulation of the relaxed optimization problem is the following:%
%
\begin{align*}
\text{minimize }\hspace{2mm} &\sum_{i=1}^{n} \gamma_i c_i \\
\text{subject to }\hspace{2mm} &\boldsymbol{T}_j \boldsymbol{c} \in \mathcal{P}_{d_j},
\hspace{5mm}j\in\mathcal{J}
.\end{align*}%
%
%
%
% Codeword polytope visualization figure
@ -566,22 +582,6 @@ figure \ref{fig:dec:poly:relaxed}.
\label{fig:dec:poly}
\end{figure}%
%
It can be seen, that the relaxed codeword polytope $\overline{Q}$ introduces
vertices with fractional values;
these represent erroneous non-codeword solutions to the linear program and
correspond to the so-called \textit{pseudocodewords} introduced in
\cite{feldman_paper}.
However, since for \ac{LDPC} codes $\overline{Q}$ scales linearly with $n$ instead of
exponentially, it is a lot more tractable for practical applications.
The resulting formulation of the relaxed optimization problem is the following:%
%
\begin{align*}
\text{minimize }\hspace{2mm} &\sum_{i=1}^{n} \gamma_i c_i \\
\text{subject to }\hspace{2mm} &\boldsymbol{T}_j \boldsymbol{c} \in \mathcal{P}_{d_j}
\hspace{5mm}j\in\mathcal{J}
.\end{align*}%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -599,14 +599,16 @@ The resulting formulation of the relaxed optimization problem is the following:%
\section{Proximal Decoding}%
\label{sec:dec:Proximal Decoding}
Proximal decoding was proposed by Wadayama et. al \cite{proximal_paper}.
With this decoding algorithm, the objective function is minimized using
the proximal gradient method.
Proximal decoding was proposed by Wadayama et. al as a novel formulation of
optimization based decoding \cite{proximal_paper}.
With this algorithm, minimization is performed using the proximal gradient
method.
In contrast to \ac{LP} decoding, the objective function is based on a
non-convex optimization formulation of the \ac{MAP} decoding problem.
In order to derive the objective function, the authors reformulate the
\ac{MAP} decoding problem:%
In order to derive the objective function, the authors begin with the
\ac{MAP} decoding rule, expressed as a continuous minimization problem over
$\boldsymbol{x}$:%
%
\begin{align}
\hat{\boldsymbol{x}} = \argmax_{\boldsymbol{x} \in \mathbb{R}^{n}}
@ -616,19 +618,37 @@ In order to derive the objective function, the authors reformulate the
\left( \boldsymbol{y} \mid \boldsymbol{x} \right)
f_{\boldsymbol{X}}\left( \boldsymbol{x} \right)%
\label{eq:prox:vanilla_MAP}
.\end{align}%
%
The likelihood $f_{\boldsymbol{Y} \mid \boldsymbol{X}}
\left( \boldsymbol{y} \mid \boldsymbol{x} \right) $ is a known function
determined by the channel model.
The prior \ac{PDF} $f_{\boldsymbol{X}}\left( \boldsymbol{x} \right)$ is also
known, as the equal probability assumption is made on
$\mathcal{C}\left( \boldsymbol{H} \right)$.
However, because in this case the considered domain is continuous,
the prior \ac{PDF} cannot be ignored as a constant during the minimization
as is often done, and has a rather unwieldy representation:%
%
\begin{align}
f_{\boldsymbol{X}}\left( \boldsymbol{x} \right) =
\frac{1}{\left| \mathcal{C}\left( \boldsymbol{H} \right) \right| }
\sum_{c \in \mathcal{C}\left( \boldsymbol{H} \right) }
\delta\left( \boldsymbol{x} - \left( -1 \right) ^{\boldsymbol{c}}\right)
\label{eq:prox:prior_pdf}
\end{align}%
%
The likelihood is usually a known function determined by the channel model.
In order to rewrite the prior \ac{PDF}
$f_{\boldsymbol{X}}\left( \boldsymbol{x} \right)$,
the so-called \textit{code-constraint polynomial} is introduced:%
%
\begin{align}
h\left( \boldsymbol{x} \right) = \sum_{j=1}^{n} \left( x_j^2-1 \right) ^2
+ \sum_{i=1}^{m} \left[
\left( \prod_{j\in \mathcal{A}\left( i \right) } x_j \right) -1 \right] ^2%
\label{eq:prox:ccp}
\end{align}%
\begin{align*}
h\left( \boldsymbol{x} \right) =
\underbrace{\sum_{j=1}^{n} \left( x_j^2-1 \right) ^2}_{\text{Bipolar constraint}}
+ \underbrace{\sum_{i=1}^{m} \left[
\left( \prod_{j\in \mathcal{A}
\left( i \right) } x_j \right) -1 \right] ^2}_{\text{Parity Constraint}}%
.\end{align*}%
%
The intention of this function is to provide a way to penalize vectors far
from a codeword and favor those close to a codeword.
@ -636,69 +656,74 @@ In order to achieve this, the polynomial is composed of two parts: one term
representing the bibolar constraint, providing for a discrete solution of the
continuous optimization problem, and one term representing the parity
constraint, accomodating the role of the parity-check matrix $\boldsymbol{H}$.
%
The equal probability assumption is made on $\mathcal{C}\left( \boldsymbol{H} \right) $.
The prior \ac{PDF} is then approximated using the code-constraint polynomial:%
%
\begin{align}
f_{\boldsymbol{X}}\left( \boldsymbol{x} \right) =
\frac{1}{\left| \mathcal{C}\left( \boldsymbol{H} \right) \right| }
\sum_{c \in \mathcal{C}\left( \boldsymbol{H} \right) }
\delta\left( \boldsymbol{x} - \left( -1 \right) ^{\boldsymbol{c}}\right)
f_{\boldsymbol{X}}\left( \boldsymbol{x} \right)
\approx \frac{1}{Z}e^{-\gamma h\left( \boldsymbol{x} \right) }%
\label{eq:prox:prior_pdf_approx}
\end{align}%
.\end{align}%
%
The authors justify this approximation by arguing that for
$\gamma \rightarrow \infty$, the right-hand side aproaches the left-hand
side. In equation \ref{eq:prox:vanilla_MAP}, the prior \ac{PDF}
$f_{\boldsymbol{X}}\left( \boldsymbol{x} \right) $ can then be subsituted
for equation \ref{eq:prox:prior_pdf_approx} and the likelihood can be rewritten using
the negative log-likelihood
$\gamma \rightarrow \infty$, the approximation in equation
\ref{eq:prox:prior_pdf_approx} aproaches the original fuction in equation
\ref{eq:prox:prior_pdf}.
This approximation can then be plugged into equation \ref{eq:prox:vanilla_MAP}
and the likelihood can be rewritten using the negative log-likelihood
$L \left( \boldsymbol{y} \mid \boldsymbol{x} \right) = -\ln\left(
f_{\boldsymbol{X} \mid \boldsymbol{Y}}\left(
\boldsymbol{x} \mid \boldsymbol{y} \right) \right) $:%
f_{\boldsymbol{Y} \mid \boldsymbol{X}}\left(
\boldsymbol{y} \mid \boldsymbol{x} \right) \right) $:%
%
\begin{align}
\begin{align*}
\hat{\boldsymbol{x}} &= \argmax_{\boldsymbol{x} \in \mathbb{R}^{n}}
e^{- L\left( \boldsymbol{y} \mid \boldsymbol{x} \right) }
e^{-\gamma h\left( \boldsymbol{x} \right) } \nonumber \\
e^{-\gamma h\left( \boldsymbol{x} \right) } \\
&= \argmin_{\boldsymbol{x} \in \mathbb{R}^n} \left(
L\left( \boldsymbol{y} \mid \boldsymbol{x} \right)
+ \gamma h\left( \boldsymbol{x} \right)
\right)%
\label{eq:prox:approx_map_problem}
.\end{align}%
.\end{align*}%
%
Thus, with proximal decoding, the objective function
$f\left( \boldsymbol{x} \right)$ to be minimized is%
$f\left( \boldsymbol{x} \right)$ considered is%
%
\begin{align}
f\left( \boldsymbol{x} \right) = L\left( \boldsymbol{x} \mid \boldsymbol{y} \right)
+ \gamma h\left( \boldsymbol{x} \right)%
\label{eq:prox:objective_function}
.\end{align}
\end{align}%
%
and the decoding problem is reformulated to%
%
\begin{align*}
\text{minimize}\hspace{2mm} &L\left( \boldsymbol{x} \mid \boldsymbol{y} \right)
+ \gamma h\left( \boldsymbol{x} \right)\\
\text{subject to}\hspace{2mm} &\boldsymbol{x} \in \mathbb{R}^n
.\end{align*}
%
For the solution of the approximalte \ac{MAP} decoding problem, the two parts
For the solution of the approximate \ac{MAP} decoding problem, the two parts
of \ref{eq:prox:objective_function} are considered separately:
the minimization of the objective function occurs in an alternating
manner, switching between the minimization of the negative log-likelihood
fashion, switching between the negative log-likelihood
$L\left( \boldsymbol{y} \mid \boldsymbol{x} \right) $ and the scaled
code-constaint polynomial $\gamma h\left( \boldsymbol{x} \right) $.
Two helper variables, $\boldsymbol{r}$ and $\boldsymbol{s}$ are introduced,
describing the result of each of the two steps.
The first step, minimizing the log-likelihood using gradient descent, yields%
The first step, minimizing the log-likelihood, is performed using gradient
descent:%
%
\begin{align*}
\begin{align}
\boldsymbol{r} \leftarrow \boldsymbol{s} - \omega \nabla
L\left( \boldsymbol{y} \mid \boldsymbol{s} \right),
\hspace{5mm}\omega > 0
.\end{align*}%
\label{eq:prox:step_log_likelihood}
.\end{align}%
%
For the second step, minimizig the scaled code-constraint polynomial using
the proximal gradient method, the proximal operator of
$\gamma h\left( \boldsymbol{x} \right) $ has to be computed and is
immediately approximalted by a gradient-descent step:%
For the second step, minimizig the scaled code-constraint polynomial, the
proximal gradient method is used and the \textit{proximal operator} of
$\gamma h\left( \boldsymbol{x} \right) $ has to be computed.
It is then immediately approximalted with gradient-descent:%
%
\begin{align*}
\text{prox}_{\gamma h} \left( \boldsymbol{x} \right) &\equiv
@ -709,8 +734,7 @@ immediately approximalted by a gradient-descent step:%
\hspace{5mm} \gamma \text{ small}
.\end{align*}%
%
The second step thus becomes \todo{Write the formulation optimization problem properly
(as shown in the introductory section)}%
The second step thus becomes%
%
\begin{align*}
\boldsymbol{s} \leftarrow \boldsymbol{r} - \gamma \nabla h\left( \boldsymbol{r} \right),
@ -725,42 +749,19 @@ of the objective function small.
Otherwise, unwanted stationary points, including local minima, are introduced.
The authors say that in practice, the value of $\gamma$ should be adjusted
according to the decoding performance.
The iterative decoding process \todo{projection with $\eta$} resulting from this considreation is shown in
figure \ref{fig:prox:alg}.
\begin{figure}[H]
\centering
\begin{genericAlgorithm}[caption={}, label={}]
$\boldsymbol{s} \leftarrow \boldsymbol{0}$
for $K$ iterations do
$\boldsymbol{r} \leftarrow \boldsymbol{s} - \omega \nabla L \left( \boldsymbol{y} \mid \boldsymbol{s} \right) $
$\boldsymbol{s} \leftarrow \boldsymbol{r} - \gamma \nabla h\left( \boldsymbol{r} \right) $
$\boldsymbol{\hat{x}} \leftarrow \text{sign}\left( \boldsymbol{s} \right) $
if $\boldsymbol{H}\boldsymbol{\hat{c}} = \boldsymbol{0}$ do
return $\boldsymbol{\hat{c}}$
end if
end for
return $\boldsymbol{\hat{c}}$
\end{genericAlgorithm}
\caption{Proximal decoding algorithm}
\label{fig:prox:alg}
\end{figure}
The components of the gradient of the code-constraint polynomial can be computed as follows:%
%
\begin{align*}
\frac{\partial}{\partial x_k} h\left( \boldsymbol{x} \right) =
4\left( x_k^2 - 1 \right) x_k + \frac{2}{x_k}
\sum_{i\in \mathcal{B}\left( k \right) } \left(
\left( \prod_{j\in\mathcal{A}\left( i \right)} x_j\right)^2
- \prod_{j\in\mathcal{A}\left( i \right) }x_j \right)
.\end{align*}%
\todo{Only multiplication?}%
\todo{$x_k$: $k$ or some other indexing variable?}%
%
%The components of the gradient of the code-constraint polynomial can be computed as follows:%
%%
%\begin{align*}
% \frac{\partial}{\partial x_k} h\left( \boldsymbol{x} \right) =
% 4\left( x_k^2 - 1 \right) x_k + \frac{2}{x_k}
% \sum_{i\in \mathcal{B}\left( k \right) } \left(
% \left( \prod_{j\in\mathcal{A}\left( i \right)} x_j\right)^2
% - \prod_{j\in\mathcal{A}\left( i \right) }x_j \right)
%.\end{align*}%
%\todo{Only multiplication?}%
%\todo{$x_k$: $k$ or some other indexing variable?}%
%%
In the case of \ac{AWGN}, the likelihood
$f_{\boldsymbol{Y} \mid \boldsymbol{X}}\left( \boldsymbol{y} \mid \boldsymbol{x} \right)$
is%
@ -778,12 +779,50 @@ it suffices to consider only the proportionality instead of the equality.}%
\nabla L \left( \boldsymbol{y} \mid \boldsymbol{x} \right)
&\propto -\nabla \lVert \boldsymbol{y} - \boldsymbol{x} \rVert^2\\
&\propto \boldsymbol{x} - \boldsymbol{y}
.\end{align*}%
,\end{align*}%
%
The resulting iterative decoding process under the assumption of \ac{AWGN} is
described by%
Allowing equation \ref{eq:prox:step_log_likelihood} to be rewritten as%
%
\begin{align*}
\boldsymbol{r} \leftarrow \boldsymbol{s} - \omega\left( \boldsymbol{s}-\boldsymbol{y} \right)\\
\boldsymbol{s} \leftarrow \boldsymbol{r} - \gamma \nabla h\left( \boldsymbol{r} \right)
\boldsymbol{r} \leftarrow \boldsymbol{s}
- \omega \left( \boldsymbol{s} - \boldsymbol{y} \right)
.\end{align*}
%
One thing to consider during the actual decoding process, is that the gradient
of the code-constraint polynomial can take on extremely large values.
In order to avoid numeric instability, an additional step is added, where all
components of the current estimate are clipped to $\left[-\eta, \eta \right]$,
where $\eta$ is a positive constant slightly larger than one:%
%
\begin{align*}
\boldsymbol{s} \leftarrow \Pi_{\eta} \left( \boldsymbol{r}
- \gamma \nabla h\left( \boldsymbol{r} \right) \right)
,\end{align*}
%
$\Pi_{\eta}\left( \cdot \right) $ expressing the projection onto
$\left[ -\eta, \eta \right]^n$.
The iterative decoding process resulting from these considreations is shown in
figure \ref{fig:prox:alg}.
\begin{figure}[H]
\centering
\begin{genericAlgorithm}[caption={}, label={}]
$\boldsymbol{s} \leftarrow \boldsymbol{0}$
for $K$ iterations do
$\boldsymbol{r} \leftarrow \boldsymbol{s} - \omega \left( \boldsymbol{s} - \boldsymbol{y} \right) $
$\boldsymbol{s} \leftarrow \Pi_\eta \left(\boldsymbol{r} - \gamma \nabla h\left( \boldsymbol{r} \right) \right)$
$\boldsymbol{\hat{x}} \leftarrow \text{sign}\left( \boldsymbol{s} \right) $
if $\boldsymbol{H}\boldsymbol{\hat{c}} = \boldsymbol{0}$ do
return $\boldsymbol{\hat{c}}$
end if
end for
return $\boldsymbol{\hat{c}}$
\end{genericAlgorithm}
\caption{Proximal decoding algorithm}
\label{fig:prox:alg}
\end{figure}