Reworked introduction to decoding using optimization
This commit is contained in:
parent
da7162e0c9
commit
51bec2b5a7
@ -30,25 +30,24 @@ the \ac{ML} decoding problem:%
|
||||
f_{\boldsymbol{Y} \mid \boldsymbol{C}} \left( \boldsymbol{y} \mid \boldsymbol{c} \right)
|
||||
.\end{align*}%
|
||||
%
|
||||
\todo{Note about these generally being the same thing, when the a priori probability
|
||||
is uniformly distributed}%
|
||||
\todo{Here the two problems are written in terms of $\hat{\boldsymbol{c}}$; below MAP
|
||||
decoding is applied in terms of $\hat{\boldsymbol{x}}$. Is that a problem?}%
|
||||
The goal is to arrive at a formulation, where a certain objective function
|
||||
$f$ has to be minimized under certain constraints:%
|
||||
%
|
||||
\begin{align*}
|
||||
\text{minimize } f\left( \boldsymbol{x} \right)\\
|
||||
\text{subject to \ldots}
|
||||
.\end{align*}
|
||||
\text{minimize } f\left( \boldsymbol{c} \right)\\
|
||||
\text{subject to $\boldsymbol{c} \in D$}
|
||||
,\end{align*}%
|
||||
%
|
||||
where $D$ is the domain of values attainable for $c$ and represents the
|
||||
constraints.
|
||||
|
||||
In contrast to the established message-passing decoding algorithms,
|
||||
the viewpoint then changes from observing the decoding process in its
|
||||
tanner graph representation (as shown in figure \ref{fig:dec:tanner})
|
||||
to a spacial representation, where the codewords are some of the edges
|
||||
of a hypercube and the goal is to find that point $\boldsymbol{x}$,
|
||||
\todo{$\boldsymbol{x}$? Or some other variable?}
|
||||
which minimizes the objective function $f$ (as shown in figure \ref{fig:dec:spacial}).
|
||||
to a spacial representation (figure \ref{fig:dec:spacial}),
|
||||
where the codewords are some of the edges of a hypercube.
|
||||
The goal is to find that point $\boldsymbol{c}$,
|
||||
which minimizes the objective function $f$.
|
||||
|
||||
%
|
||||
% Figure showing decoding space
|
||||
@ -143,11 +142,11 @@ which minimizes the objective function $f$ (as shown in figure \ref{fig:dec:spac
|
||||
\node[color=KITblue, right=0cm of c110] {$\left( 1, 1, 0 \right) $};
|
||||
\node[color=KITblue, above=0cm of c011] {$\left( 0, 1, 1 \right) $};
|
||||
|
||||
% x
|
||||
% c
|
||||
|
||||
\node[color=KITgreen, fill=KITgreen,
|
||||
draw, circle, inner sep=0pt, minimum size=4pt] (f) at (0.9, 0.7, 1) {};
|
||||
\node[color=KITgreen, right=0cm of f] {$\boldsymbol{x}$};
|
||||
draw, circle, inner sep=0pt, minimum size=4pt] (c) at (0.9, 0.7, 1) {};
|
||||
\node[color=KITgreen, right=0cm of c] {$\boldsymbol{c}$};
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Spacial representation of a single parity-check code}
|
||||
@ -164,7 +163,6 @@ which minimizes the objective function $f$ (as shown in figure \ref{fig:dec:spac
|
||||
\label{sec:dec:LP Decoding}
|
||||
|
||||
\Ac{LP} decoding is a subject area introduced by Feldman et al.
|
||||
\todo{Space before citation?}
|
||||
\cite{feldman_paper}. They reframe the decoding problem as an
|
||||
\textit{integer linear program} and subsequently present two relaxations into
|
||||
\textit{linear programs}, one representing a formulation of exact \ac{LP}
|
||||
@ -179,7 +177,8 @@ making the \ac{ML} and \ac{MAP} decoding problems equivalent.}%
|
||||
%
|
||||
\begin{align}
|
||||
\hat{\boldsymbol{c}} = \argmax_{\boldsymbol{c} \in \mathcal{C}}
|
||||
f_{\boldsymbol{Y} \mid \boldsymbol{C}} \left( \boldsymbol{y} \mid \boldsymbol{c} \right)%
|
||||
f_{\boldsymbol{Y} \mid \boldsymbol{C}}
|
||||
\left( \boldsymbol{y} \mid \boldsymbol{c} \right)%
|
||||
\label{eq:lp:ml}
|
||||
.\end{align}%
|
||||
%
|
||||
|
||||
Loading…
Reference in New Issue
Block a user