
CEL

WT Tutorium 6

Andreas Tsouchlos

30. Januar 2026



Kovarianz

cov(X, Y ) = E

(
X − E(X)

)(
Y − E(Y )

)
= E(XY ) − E(X)E(Y )

Erinnerung: Varianz

V (X) = E
(

(X − E(X))2 )
= E(X2) − E2(X)

Korrelation
E(XY )

Korrelationskoeffizient
ρXY = cov(X, Y )√

V (X)V (Y )
, ρXY ∈ [−1, 1] ρXY = 0 ⇔ E(XY ) = E(X)E(Y )

x

y

x

y

x

y

ρ = 0.9 ρ = 1 ρ = 0
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Erinnerung: Kovarianz, Korrelation
& Korrelationskoeffizient



Disjunkte Ereignisse
“A und B können nicht gleichzeitig eintreten”

P (A ∩ B) = 0
⇔

P (A ∪ B) = P (A) + P (B)

Unabhängige Ereignisse
“Es gibt keine Zusammenhang zwischen dem Eintreten von A

und B”

P (A ∩ B) = P (A)P (B)
P (B)̸=0⇔

P (A|B) = P (A)

Unkorrelierte ZV
“Es gibt keinen linearen (genauer: affinen) Zusammenhang

zwischen X und Y”

ρXY = 0
⇔

E(XY ) = E(X)E(Y )

Unabhängige ZV
“Es gibt keinen Zusammenhang zwischen den Werten, welche

X und Y annehmen”

fX,Y (x, y) = fX(x)fY (y) (stetig)
bzw.

PX,Y (x, y) = PX(x)PY (y) (diskret)
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Unabhängigkeit, Korrelation & Disjunktheit



Korrelationskoeffizient

ρXY = cov(X, Y )√
V (X)V (Y )

Kovarianz

cov(X, Y ) = E(X, Y ) − E(X)E(Y )

Erwartungswert

E(X) =
∫ ∞
−∞ xfX(x)dx

E(g(X)) =
∫ ∞
−∞ g(x)fX(x)dx

E(X + b) = E(X) + b

E(X + Y ) = E(X) + E(Y )
E(aX) = aE(X)

Varianz

V (X) = E
(
(X − E(X))2)

V (X) = E(X2) − (E(X))2

V (aX) = a2V (X)
V (X + b) = V (X)
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Zusammenfassung



Es ist die Zufallsvariable X ∼ N (0, 1) gegeben. Berechnen Sie jeweils den Korrelationskoeffizienten ρXY für

a) Y = aX + b mit a, b ∈ R und a ̸= 0.

b) Y = X2.
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Aufgabe 1: Korrelationskoeffizienten



Es ist die Zufallsvariable X ∼ N (0, 1) gegeben. Berechnen Sie jeweils den Korrelationskoeffizienten ρXY für
a) Y = aX + b mit a, b ∈ R und a ̸= 0.

ρXY = cov(X, Y )√
V (X)V (Y )

cov(X, Y ) = E(XY ) −
0

E(X)E(Y ) = E(XY )

= E(aX2 + bX) = a E(X2)︸ ︷︷ ︸
=V (X)=1

+b
0

E(X) = a

V (Y ) = E
(
(Y − E(Y ))2)

= E
(
(aX)2)

= a2 E(X2)︸ ︷︷ ︸
=V (X)=1

= a2

ρXY = a√
a2 = a

|a|
=


+1, a > 0
−1, a < 0
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Aufgabe 1: Korrelationskoeffizienten



b) Y = X2.

ρXY = cov(X, Y )√
V (X)V (Y )

cov(X, Y ) = E(XY ) −
0

E(X)E(Y ) = E(XY ) = E(X3)

=
∫ ∞
−∞ x3︸︷︷︸

ungerade
· fX(x)︸ ︷︷ ︸

gerade

dx = 0

ρXY = 0 0

0
fX(x)
x3

1

1Die zwei Kurven sind bezüglich der y-Achse unterschiedlich skaliert.
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Aufgabe 1: Korrelationskoeffizienten



Die Normalverteilung

fX(x) = 1√
2πσ2 exp

(x − µ)2

2σ2

 FX(x) =

∫ x

−∞

1√
2πσ2 exp

(u − µ)2

2σ2

 du

Die Standardnormalverteilung

X ∼ N (0, 1)

Φ(x) := FX(x) = P (X ≤ x)
Φ(−x) = 1 − Φ(x)

x Φ(x) x Φ(x) x Φ(x)
0,00 0,500000 0,10 0,539828 0,20 0,579260
0,02 0,507978 0,12 0,547758 0,22 0,587064
0,04 0,515953 0,14 0,555670 0,24 0,594835
0,06 0,523922 0,16 0,563559 0,26 0,602568
0,08 0,531881 0,18 0,571424 0,28 0,610261

Standardisierung einer ZV
X̃ = X − E(X)√

V (X)
= X − µ

σ

Rechenbeispiel

X ∼ N (µ = 1, σ2 = 0,52)

P (X ≤ 1,12) = P

X − 1
0,5

≤ 1,12 − 1
0,5

 = P
(

X̃︸︷︷︸
∼N (0,1)

≤ 0,24
)

= Φ (0,24) = 0,594835
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Erinnerung: Rechnen mit Normalverteilungen



Chintschin’sches Gesetz großer Zahlen

X1, . . . XN unabhängig und identisch verteilt
E(X1) < ∞

 ⇒ lim
N→∞

P


∣∣∣∣∣∣∣∣
1
N

N∑
n=1

XN − E(X1)
∣∣∣∣∣∣∣∣ < ϵ

 = 1

“Je mehr realisierungen betrachtet werden, desto wahrscheinlicher
ist das arithmetische Mittel nah am Erwartungswert”

Zentraler Grenzwertsatz von Lindeberg-Lévy

X1, . . . XN unabhängig und identisch verteilt
E(X1) < ∞
V (X1) < ∞


⇒


SN = X1 + · · · + XN , a < b ∈ R

lim
N→∞

P

a ≤ SN − Nµ√
Nσ2 ≤ b

 = Φ(b) − Φ(a)

“Die Summe unabhängiger und identisch verteilter ZV verhält sich immer mehr wie eine
Normalverteilung, je mehr ZV betrachtet werden”
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Grenzwertsätze



Grenzwertsatz von de Moivre-Laplace

lim
N→∞

P

 SN − Np√
Np(1 − p)

≤ x

 = Φ(x)

“Bin(N, p) N→∞−−−→ N
(
µ = Np, σ2 = Np(1 − p)

)
”

Errinerung: Binomialverteilung

SN ∼ Bin(N, p)

PSN
(k) =

N

k

pk(1 − p)N−k

E(SN) = Np, V (SN) = Np(1 − p)

Die approximation einer Binomialverteilung durch eine Normalverteilung ist in der Praxis dann zulässig,
wenn Np(1 − p) ≥ 9:

PX(a < SN ≤ b) =
b∑

k=a

N

k

pk(1 − p)N−k ≈ Φ
 b − Np√

Np(1 − p)

 − Φ
 a − Np√

Np(1 − p)



k

P
S

N
(k

)

k

P
S

N
(k

)

k

P
S

N
(k

)

N = 4, p = 0,5 N = 10, p = 0,5 N = 50, p = 0,5
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Approximation einer Binomialverteilung
mit dem ZGWS



Standardnormalverteilung

X ∼ N (0, 1)

Φ(x) := FX(x) = P (X ≤ x)
Φ(−x) = 1 − Φ(x)

Standardisierung

X̃ = X − E(X)√
V (X)

= X − µ

σ

Approximation einer Binom.vert. mit dem ZGWS

Bedingung: Np(1 − p) ≥ 9

PX(a < SN ≤ b) =
b∑

k=a

N

k

pk(1 − p)N−k

≈ Φ
 b − Np√

Np(1 − p)

 − Φ
 a − Np√

Np(1 − p)



x Φ(x) x Φ(x) x Φ(x)
1,60 0,945201 2,00 0,977250 2,40 0,991802
1,62 0,947384 2,02 0,978308 2,42 0,992240
1,64 0,949497 2,04 0,979325 2,44 0,992656
1,66 0,951543 2,06 0,980301 2,46 0,993053
1,68 0,953521 2,08 0,981237 2,48 0,993431
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Zusammenfassung



Im Werk einer Zahnradfabrik werden verschiedene Präzisionsmetallteile gefertigt. Während einer Schicht werden 5000 Stück eines
Typs A hergestellt. Bei der Qualitätskontrolle werden 3% dieser Teile als defekt klassifiziert und aussortiert.

a) Berechnen Sie näherungsweise die Wahrscheinlichkeit dafür, dass während einer Schicht zwischen 125 und 180 Teile
aussortiert werden.

b) Die aussortierten Teile werden nach Schichtende zur Wiederverwertung in einem Kessel auf einmal eingeschmolzen. Wie viele
Teile muss der Kessel fassen, damit er mit einer Wahrscheinlichkeit von min. 0,98 nicht überfüllt ist?

c) Der Kessel fasse maximal 200 Teile. Es sollen nun mehr als 5000 Teile pro Schicht hergestellt werden. Wie viele Teile können
maximal gefertigt werden, damit der Kessel mit einer Wahrscheinlichkeit von 0, 98 nicht überfüllt ist?
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Aufgabe 2: Abschätzungen von Verteilungen
(ZGWS)



Im Werk einer Zahnradfabrik werden verschiedene Präzisionsmetallteile gefertigt. Während einer Schicht werden 5000 Stück eines
Typs A hergestellt. Bei der Qualitätskontrolle werden 3% dieser Teile als defekt klassifiziert und aussortiert.

a) Berechnen Sie näherungsweise die Wahrscheinlichkeit dafür, dass während einer Schicht zwischen 125 und 180 Teile
aussortiert werden.

SN := Anzahl an defekten Teilen
SN ∼ Bin(N = 5000, p = 0,03)

P (125 ≤ SN ≤ 180) =
180∑

k=125

N

k

pk(1 − p)N−k

Viel zu aufwendig

P (125 ≤ SN ≤ 180) =
180∑

k=125

N

k

pk(1 − p)N−k

Np(1 − p) = 145,5 ≥ 9 → S̃N ∼ N (µ =
=150︷ ︸︸ ︷
Np, σ2 =

=145,5︷ ︸︸ ︷
Np(1 − p))

P (125 ≤ S̃N ≤ 180) = P

125 − 150√
145,5

≤

∼N (0,1)︷ ︸︸ ︷
S̃N − E(S̃N)√

V (S̃N)
≤ 180 − 150√

145,5


≈ Φ(2,487) − Φ(−2,073)
= Φ(2,487) − (1 − Φ(2,073)) ≈ 0,974
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Aufgabe 2: Abschätzungen von Verteilungen
(ZGWS)



b) Die aussortierten Teile werden nach Schichtende zur Wiederverwertung in einem Kessel auf einmal eingeschmolzen. Wie viele
Teile muss der Kessel fassen, damit er mit einer Wahrscheinlichkeit von min. 0,98 nicht überfüllt ist?

S̃N ∼ N (µ = 150, σ2 = 145,5)

P (S̃N ≤ dx) ≥ 0,98 ⇒ P



∼N (0,1)︷ ︸︸ ︷
S̃N − E(S̃N)√

V (S̃N)
≤ dx − 150√

145,5

 ≥ 0,98

⇒ Φ
dx − 150√

145,5

 ≥ 0,98

⇒ dx − 150√
145,5

≥ Φ−1(0,98) = 2,06

⇒ dx ≥ 174,8

Der Kessel muss mindestens 175 Teile fassen
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Aufgabe 2: Abschätzungen von Verteilungen
(ZGWS)



c) Der Kessel fasse maximal 200 Teile. Es sollen nun mehr als 5000 Teile pro Schicht hergestellt werden. Wie viele Teile können
maximal gefertigt werden, damit der Kessel mit einer Wahrscheinlichkeit von 0,98 nicht überfüllt ist?

S̃N ∼ N
(
µ = Np, σ2 = Np(1 − p)

)

P (S̃N ≤ 200) ≥ 0,98 ⇒ P



∼N (0,1)︷ ︸︸ ︷
S̃N − E(S̃N)√

V (S̃N)
≤ 200 − Np√

Np(1 − p)

 ≥ 0,98

⇒ Φ
 200 − Np√

Np(1 − p)

 ≥ 0,98

⇒ 200 − Np√
Np(1 − p)

≥ Φ−1(0,98) = 2,06

⇒ Np + 2,06 ·
√
Np(1 − p) − 200 ≤ 0

u :=
√

N

a := p = 0,03
b := 2,06 ·

√
p(1 − p) ≈ 0,351

c := −200

→ au2 + bu + c ≤ 0

⇒ u =
√

N ∈ [−76, 87,7]
⇒ N ≤ 5776 ∩ N ≤ 7691,29
⇒ N ≤ 5776
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Aufgabe 2: Abschätzungen von Verteilungen
(ZGWS)
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