Compare commits
No commits in common. "main" and "tut4-v1.1" have entirely different histories.
@ -99,7 +99,7 @@
|
|||||||
\pause\column{\kitthreecolumns}
|
\pause\column{\kitthreecolumns}
|
||||||
\centering
|
\centering
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Verteilungsfunktion $F_X(x)$ einer stetigen ZV
|
\item Verteilungsfunktion $F_X(x)$ einer stetiger ZV
|
||||||
\begin{gather*}
|
\begin{gather*}
|
||||||
F_X(x) = P(X \le x)
|
F_X(x) = P(X \le x)
|
||||||
\end{gather*}
|
\end{gather*}
|
||||||
@ -107,7 +107,7 @@
|
|||||||
\pause\column{\kitthreecolumns}
|
\pause\column{\kitthreecolumns}
|
||||||
\centering
|
\centering
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Wahrscheinlichkeitsdichte $f_X(x)$ einer stetigen ZV
|
\item Wahrscheinlichkeitsdichte $f_X(x)$ einer stetiger ZV
|
||||||
\begin{gather*}
|
\begin{gather*}
|
||||||
F_X(x) = \int_{-\infty}^{x} f_X(u) du
|
F_X(x) = \int_{-\infty}^{x} f_X(u) du
|
||||||
\end{gather*}
|
\end{gather*}
|
||||||
@ -154,7 +154,7 @@
|
|||||||
\end{minipage}
|
\end{minipage}
|
||||||
\begin{minipage}{0.38\textwidth}
|
\begin{minipage}{0.38\textwidth}
|
||||||
\begin{lightgrayhighlightbox}
|
\begin{lightgrayhighlightbox}
|
||||||
Erinnerung: Diskrete Zufallsvariablen
|
Erinnerung
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\text{\normalfont Erwartungswert: }& E(X) =
|
\text{\normalfont Erwartungswert: }& E(X) =
|
||||||
\sum_{n=1}^{\infty} x_n P_X(x) \\
|
\sum_{n=1}^{\infty} x_n P_X(x) \\
|
||||||
@ -171,7 +171,7 @@
|
|||||||
\begin{columns}[t]
|
\begin{columns}[t]
|
||||||
\column{\kitthreecolumns}
|
\column{\kitthreecolumns}
|
||||||
\centering
|
\centering
|
||||||
\begin{greenblock}{Verteilungsfunktion (stetige ZV)}
|
\begin{greenblock}{Verteilungsfunktion (kontinuierlich)}
|
||||||
\vspace*{-6mm}
|
\vspace*{-6mm}
|
||||||
\begin{gather*}
|
\begin{gather*}
|
||||||
F_X(x) = P(X \le x)\\[4mm]
|
F_X(x) = P(X \le x)\\[4mm]
|
||||||
@ -270,9 +270,9 @@
|
|||||||
\end{align*}
|
\end{align*}
|
||||||
\pause\begin{gather*}
|
\pause\begin{gather*}
|
||||||
\int_{-\infty}^{\infty} f_X(x) dx
|
\int_{-\infty}^{\infty} f_X(x) dx
|
||||||
= \int_{0}^{\infty} C\cdot x e^{-ax^2} dx
|
= \int_{-\infty}^{\infty} C\cdot x e^{-ax^2} dx
|
||||||
= \frac{C}{-2a} \int_{0}^{\infty} (-2ax) e^{-ax^2} dx \\
|
= \frac{C}{-2a} \int_{-\infty}^{\infty} (-2ax) e^{-ax^2} dx \\
|
||||||
= \frac{C}{-2a} \int_{0}^{\infty} (e^{-ax^2})' dx
|
= \frac{C}{-2a} \int_{-\infty}^{\infty} (e^{-ax^2})' dx
|
||||||
= \frac{C}{-2a} \mleft[ e^{-ax^2} \mright]_0^{\infty} \overset{!}{=} 1 \hspace{10mm} \Rightarrow C = 2a
|
= \frac{C}{-2a} \mleft[ e^{-ax^2} \mright]_0^{\infty} \overset{!}{=} 1 \hspace{10mm} \Rightarrow C = 2a
|
||||||
\end{gather*}
|
\end{gather*}
|
||||||
\centering
|
\centering
|
||||||
@ -711,7 +711,7 @@
|
|||||||
2 - 2\Phi\left(\frac{0{,}2}{\sigma'}\right) = 2{,}12\cdot 10^{-3} \\[2mm]
|
2 - 2\Phi\left(\frac{0{,}2}{\sigma'}\right) = 2{,}12\cdot 10^{-3} \\[2mm]
|
||||||
\Rightarrow \Phi\left(\frac{0{,}2}{\sigma'}\right) \approx 0{,}9989 \\[2mm]
|
\Rightarrow \Phi\left(\frac{0{,}2}{\sigma'}\right) \approx 0{,}9989 \\[2mm]
|
||||||
\Rightarrow \sigma' \approx \frac{0{,}2}{\Phi^{-1}(0{,}9989)}
|
\Rightarrow \sigma' \approx \frac{0{,}2}{\Phi^{-1}(0{,}9989)}
|
||||||
\approx \frac{0{,}2}{3{,}08} \approx 0{,}065
|
\approx \frac{0{,}2}{3{,}08} \approx 0{,}65
|
||||||
\end{gather*}
|
\end{gather*}
|
||||||
\end{columns}
|
\end{columns}
|
||||||
\pause \vspace*{-5mm}\item Durch einen Produktionsfehler verschiebt sich der
|
\pause \vspace*{-5mm}\item Durch einen Produktionsfehler verschiebt sich der
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user