Compare commits

...

2 Commits

Author SHA1 Message Date
d898c48619 Add exercise title 2025-10-23 00:39:04 +02:00
91cf66a544 Add tutorial 1 exercise slides 2025-10-23 00:17:44 +02:00
3 changed files with 285 additions and 0 deletions

View File

@ -3,6 +3,9 @@ all:
TEXINPUTS=./lib/cel-slides-template-2025:$$TEXINPUTS latexmk src/template/presentation.tex
mv build/presentation.pdf build/presentation_template.pdf
TEXINPUTS=./lib/cel-slides-template-2025:$$TEXINPUTS latexmk src/2025-11-07/presentation.tex
mv build/presentation.pdf build/presentation_2025-11-07.pdf
clean:
rm -rf build

View File

View File

@ -0,0 +1,282 @@
\documentclass[de]{CELbeamer}
%
%
% CEL Template
%
%
\newcommand{\templates}{preambles}
\input{\templates/packages.tex}
\input{\templates/macros.tex}
\grouplogo{CEL_logo.pdf}
\groupname{Communication Engineering Lab (CEL)}
\groupnamewidth{80mm}
\fundinglogos{}
%
%
% Custom commands
%
%
\input{lib/latex-common/common.tex}
\pgfplotsset{colorscheme/rocket}
%TODO: Fix path
\newcommand{\res}{src/template/res}
% \tikzstyle{every node}=[font=\small]
% \captionsetup[sub]{font=small}
%
%
% Document setup
%
%
\usepackage{tikz}
\usepackage{tikz-3dplot}
\usetikzlibrary{spy, external, intersections}
%\tikzexternalize[prefix=build/]
\usepackage{pgfplots}
\pgfplotsset{compat=newest}
\usepgfplotslibrary{fillbetween}
\usepackage{enumerate}
\usepackage{listings}
\usepackage{subcaption}
\usepackage{bbm}
\usepackage{multirow}
\usepackage{xcolor}
\title{WT Tutorium 1}
\author[Tsouchlos]{Andreas Tsouchlos}
\date[]{\today}
%
%
% Document body
%
%
\begin{document}
\begin{frame}[title white vertical, picture=images/IMG_7801-cut]
\titlepage
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Aufgabe 1}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Theorie}
% TODO: Replace slide content with relevant stuff
\begin{frame}
\frametitle{Relevante Theorie I}
\begin{columns}
\column{\kitthreecolumns}
\begin{greenblock}{Zufallsvariablen (ZV)}%
\vspace*{-6mm}
\begin{gather*}
f_X(x) := \frac{d}{dx} F_X(x) \\
P(X \le x) = F_X(x) = \int_{-\infty}^{x} f_X(t) dt \\
E(X) = \int_{-\infty}^{\infty} x\cdot f_X(x) dx
\end{gather*}
\end{greenblock}
\column{\kitthreecolumns}
\begin{greenblock}{Important Equations}%
\vspace*{-6mm}
\begin{gather*}
f_X(x) := \frac{d}{dx} F_X(x) \\
P(X \le x) = F_X(x) = \int_{-\infty}^{x} f_X(t) dt \\
E(X) = \int_{-\infty}^{\infty} x\cdot f_X(x) dx
\end{gather*}
\end{greenblock}
\end{columns}
\begin{greenblock}{Normalverteilung}
\begin{columns}
\column{\kitthreecolumns}
\begin{gather*}
\text{Normalverteilung:} \hspace{8mm}
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}
e^{-\frac{(x - \mu)^2}{2\sigma^2}}
\end{gather*}
\column{\kitthreecolumns}
\begin{figure}
\centering
\begin{tikzpicture}
\begin{axis}[
domain=-4:4,
samples=100,
width=11cm,
height=6cm,
ticks=none,
xlabel={$x$},
ylabel={$f_X(x)$}
]
\addplot+[mark=none, line width=1pt] {exp(-x^2)};
\end{axis}
\end{tikzpicture}
\end{figure}
\end{columns}
\end{greenblock}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Aufgabe}
% TODO: Replace slide content with relevant stuff
\begin{frame}
\frametitle{Aufgabe 1: Ergebnisraum \& Hypergeometrische\\ Verteilung}
Bei einem Kartenspiel erhält ein Spieler 5 Karten aus einem Deck
von 52 Karten (bestehend aus
13 Arten mit je 4 Farben). Wie groß ist die Wahrscheinlichkeit,
dass der Spieler
% tex-fmt: off
\begin{enumerate}[a{)}]
\item mindestens ein Ass hat?
\item genau ein Ass hat?
\item mindestens zwei Karten der gleichen Art (“Paar”) hat?
\end{enumerate}
% tex-fmt: on
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Aufgabe 2}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Theorie}
% TODO: Replace slide content with relevant stuff
\begin{frame}
\frametitle{Relevante Theorie II}
\begin{gather*}
f_X(x) := \frac{d}{dx} F_X(x) \\
P(X \le x) = F_X(x) = \int_{-\infty}^{x} f_X(t) dt \\
E(X) = \int_{-\infty}^{\infty} x\cdot f_X(x) dx
\end{gather*}
\begin{figure}
\centering
\begin{subfigure}[c]{0.5\textwidth}
\centering
\begin{gather*}
\text{Normalverteilung:} \hspace{8mm}
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}
e^{-\frac{(x - \mu)^2}{2\sigma^2}}
\end{gather*}
\end{subfigure}%
\begin{subfigure}[c]{0.4\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
domain=-4:4,
samples=100,
width=\textwidth,
height=0.5\textwidth,
ticks=none,
xlabel={$x$},
ylabel={$f_X(x)$}
]
\addplot+[mark=none, line width=1pt] {exp(-x^2)};
\end{axis}
\end{tikzpicture}
\end{subfigure}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Aufgabe}
% TODO: Replace slide content with relevant stuff
\begin{frame}
\frametitle{Aufgabe 2: Variationen \& Permutationen}
Aufgabe 2: Variationen \& Permutationen
Ein Burgerrestaurant bietet verschiedene Burger mit den Zutaten Salat
(S), Käse (K), Tomate (T)
und Patty (P) an. Diese werden zufällig für die Zubereitung eines
Burgers ausgewählt.
% tex-fmt: off
\begin{enumerate}[a{)}]
\item Die Ergebnismenge sei $\Omega = \{S, K, T, P\}$. Wie lautet die
Potenzmenge $P(\Omega)$?
\item Für einen normalen Burger werden 3 der 4 möglichen Zutaten
ausgewählt und in einer
bestimmten Reihenfolge auf das Burgerbrötchen gelegt. Wie viele
verschiedene normale
Burger gibt es?
\item Ein Burger ``Spezial'' besteht ebenfalls aus 3 Zutaten. Jedoch
können Tomate und Salat
doppelt vorkommen. Wie viele verschiedene Burger „Spezial“ gibt es?
\item Der Burger „Jumbo“ enthält die folgende Menge an Zutaten: $\{S, S,
T, T, K, K, K, P, P, P\}$
die alle verwendet werden. Wie viele mögliche Belegungen des Burgers
``Jumbo'' gibt es?
\end{enumerate}
% tex-fmt: on
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Zusammenfassung}
% TODO: Replace slide content with relevant stuff
\begin{frame}
\frametitle{Zusammenfassung}
\begin{gather*}
f_X(x) := \frac{d}{dx} F_X(x) \\
P(X \le x) = F_X(x) = \int_{-\infty}^{x} f_X(t) dt \\
E(X) = \int_{-\infty}^{\infty} x\cdot f_X(x) dx
\end{gather*}
\begin{figure}
\centering
\begin{subfigure}[c]{0.5\textwidth}
\centering
\begin{gather*}
\text{Normalverteilung:} \hspace{8mm}
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}
e^{-\frac{(x - \mu)^2}{2\sigma^2}}
\end{gather*}
\end{subfigure}%
\begin{subfigure}[c]{0.4\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
domain=-4:4,
samples=100,
width=\textwidth,
height=0.5\textwidth,
ticks=none,
xlabel={$x$},
ylabel={$f_X(x)$}
]
\addplot+[mark=none, line width=1pt] {exp(-x^2)};
\end{axis}
\end{tikzpicture}
\end{subfigure}
\end{figure}
\end{frame}
\end{document}