From f0c22852bec60fd886dfa3084fb90b2f8871eaa7 Mon Sep 17 00:00:00 2001 From: Andreas Tsouchlos Date: Tue, 16 Dec 2025 00:18:12 +0100 Subject: [PATCH] tut4: Started adding theory for exercise 1 --- src/2025-12-19/presentation.tex | 85 ++++++++++++++++++++++++++++++++- 1 file changed, 84 insertions(+), 1 deletion(-) diff --git a/src/2025-12-19/presentation.tex b/src/2025-12-19/presentation.tex index bc07769..cc3a94c 100644 --- a/src/2025-12-19/presentation.tex +++ b/src/2025-12-19/presentation.tex @@ -81,7 +81,90 @@ \subsection{Theorie Wiederholung} \begin{frame} - \frametitle{sasdf} + \frametitle{Stetige Zufallsvariablen} + + \vspace*{-10mm} + + \begin{lightgrayhighlightbox} + Erinnerung: Diskrete Zufallsvariablen + \begin{align*} + \text{\normalfont Verteilung: }& P_X(x) = P(X = x) \\ + \text{\normalfont Verteilungsfunktion: }& F_X(x) = P(X \le x) = + \sum_{n: x_n \le y} P_X(x) + \end{align*} + \vspace{-10mm} + \end{lightgrayhighlightbox} + + \begin{columns}[t] + \pause\column{\kitthreecolumns} + \centering + \begin{itemize} + \item Verteilungsfunktion $F_X(x)$ einer stetiger ZV + \begin{gather*} + F_X(x) = P(X \le x) \\[5mm] + \text{Eigenschaften:} \\[3mm] + \lim_{x\rightarrow -\infty} F_X(x) = 0 \\ + \lim_{x\rightarrow +\infty} F_X(x) = 1 \\ + x_1 \le x_2 \Rightarrow F_X(x_1) \le F_X(x_2)\\ + \lim_{h\rightarrow 0^+} F_X(x + h) = F_X(x) + \end{gather*} + \end{itemize} + \pause\column{\kitthreecolumns} + \centering + \begin{itemize} + \item Wahrscheinlichkeitsdichte $f_X(x)$ einer stetiger ZV + \begin{gather*} + F_X(x) = \int_{-\infty}^{x} f_X(u) du \\[5mm] + \text{Eigenschaften:} \\[3mm] + f_X(x) \ge 0 \\ + \int_{-\infty}^{\infty} f_X(x) dx = 1 + \end{gather*} + \end{itemize} + \end{columns} +\end{frame} + +% TODO: Write this +\begin{frame} + \frametitle{TODO} + +\end{frame} + +\begin{frame} + \frametitle{Zusammenfassung} + + \begin{columns}[c] + \column{\kitthreecolumns} + \centering + \begin{greenblock}{Verteilungsfunktion (kontinuierlich)} + \vspace*{-6mm} + \begin{gather*} + F_X(x) = P(X \le x)\\[8mm] + \lim_{x\rightarrow -\infty} F_X(x) = 0 \\ + \lim_{x\rightarrow +\infty} F_X(x) = 1 \\ + x_1 \le x_2 \Rightarrow F_X(x_1) \le F_X(x_2)\\ + \lim_{h\rightarrow 0^+} F_X(x + h) = F_X(x) + \end{gather*} + \end{greenblock} + \column{\kitthreecolumns} + \centering + \begin{greenblock}{Wahrscheinlichkeitsdichte \phantom{()}} + \vspace*{-6mm} + \begin{gather*} + F_X(x) = \int_{-\infty}^{x} f_X(u) du \\[5mm] + f_X(x) \ge 0 \\ + \int_{-\infty}^{\infty} f_X(x) dx = 1 + \end{gather*} + \end{greenblock} + %TODO: Rename this + \begin{greenblock}{TODO} + \vspace*{-6mm} + \begin{gather*} + P(a < X \le b) = F_X(b) - F_X(a) \\[2mm] + E(X) = \int_{-\infty}^{x} u f_X(u) du + \end{gather*} + \end{greenblock} + + \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%