From dfc558ca16b4ad115bc2af563b91136970d0b196 Mon Sep 17 00:00:00 2001 From: Andreas Tsouchlos Date: Wed, 21 Jan 2026 09:53:26 +0100 Subject: [PATCH] Add solution for exercise 2c --- src/2026-01-30/presentation.tex | 110 ++++++++++++++++++++++++++++---- 1 file changed, 96 insertions(+), 14 deletions(-) diff --git a/src/2026-01-30/presentation.tex b/src/2026-01-30/presentation.tex index b7fc815..fd08f7e 100644 --- a/src/2026-01-30/presentation.tex +++ b/src/2026-01-30/presentation.tex @@ -351,27 +351,48 @@ % tex-fmt: on \vspace*{-5mm} + \pause \begin{gather*} \tilde{S}_N \sim \mathcal{N}(\mu = 150, \sigma^2 = 145{,}5) \\ \end{gather*} - \vspace*{-5mm} - \pause\begin{align*} - P(\tilde{S}_N \le dx) \ge 0{,}98 - \hspace*{5mm} &\Rightarrow \hspace*{5mm} - P\left(\frac{\tilde{S}_N - E(\tilde{S}_N)}{\sqrt{V(\tilde{S}_N)}} - \le \frac{dx - 150}{\sqrt{145{,}5}} \right) \ge 0{,}98 \\[3mm] - &\Rightarrow \hspace*{5mm} - \Phi\left( \frac{dx - 150}{\sqrt{145{,}5}} \right) \ge 0{,}98 \\[3mm] - &\Rightarrow \hspace*{5mm} - \frac{dx - 150}{\sqrt{145{,}5}} \ge \Phi^{-1}(0{,}98) = 2{,}06 \\[3mm] - &\Rightarrow \hspace*{5mm} - dx \ge 174{,}8 - \end{align*} + \pause + \begin{minipage}[t]{0.2\textwidth} + \phantom{placeholder} + \end{minipage} + \begin{minipage}[t]{0.2\textwidth} + \vspace*{-4mm} + \centering + \begin{gather*} + P(\tilde{S}_N \le dx) \ge 0{,}98 + \end{gather*} + \end{minipage}% + \pause + \begin{minipage}[t]{0.3\textwidth} + \vspace*{-15mm} + \begin{align*} + &\Rightarrow \hspace*{5mm} + P\Bigg(\overbrace{\frac{\tilde{S}_N - + E(\tilde{S}_N)}{\sqrt{V(\tilde{S}_N)}}}^{\sim \mathcal{N}(0,1)} + \le \frac{dx - 150}{\sqrt{145{,}5}} \Bigg) \ge 0{,}98 + \end{align*} + \vspace*{-5mm} + \pause + \begin{align*} + &\Rightarrow \hspace*{5mm} + \Phi\left( \frac{dx - 150}{\sqrt{145{,}5}} \right) \ge + 0{,}98 \\[3mm] + &\Rightarrow \hspace*{5mm} + \frac{dx - 150}{\sqrt{145{,}5}} \ge \Phi^{-1}(0{,}98) = + 2{,}06 \\[3mm] + &\Rightarrow \hspace*{5mm} + dx \ge 174{,}8 + \end{align*} + \end{minipage} + \pause \centering \vspace*{10mm} Der Kessel muss mindestens $175$ Teile fassen - \end{frame} \begin{frame} @@ -386,6 +407,67 @@ Wahrscheinlichkeit von $0{,}98$ nicht überfüllt ist? \end{enumerate} % tex-fmt: on + + \vspace*{-10mm} + \pause + \begin{gather*} + \tilde{S}_N \sim \mathcal{N}\left(\mu = Np, \sigma^2 = Np(1-p)\right) \\ + \end{gather*} + \pause + \begin{minipage}[t]{0.2\textwidth} + \vspace*{-4mm} + \centering + \begin{gather*} + P(\tilde{S}_N \le 200) \ge 0{,}98 + \end{gather*} + \end{minipage}% + \pause + \begin{minipage}[t]{0.3\textwidth} + \vspace*{-15mm} + \begin{align*} + &\Rightarrow \hspace*{5mm} + P\Bigg(\overbrace{\frac{\tilde{S}_N - + E(\tilde{S}_N)}{\sqrt{V(\tilde{S}_N)}}}^{\sim + \mathcal{N}(0,1)} + \le \frac{200 - Np}{\sqrt{Np(1-p)} } \Bigg) \ge 0{,}98 + \end{align*} + \vspace*{-5mm} + \pause + \begin{align*} + &\Rightarrow \hspace*{5mm} + \Phi\left( \frac{200 - Np}{\sqrt{Np(1-p)}} \right) \ge + 0{,}98 \\[3mm] + &\Rightarrow \hspace*{5mm} + \frac{200 - Np}{\sqrt{Np(1-p)}} \ge \Phi^{-1}(0{,}98) = + 2{,}06 \\[3mm] + &\Rightarrow \hspace*{5mm} + Np + 2{,}06\cdot \sqrt{Np(1-p)} - 200 \le 0 + \end{align*} + \end{minipage} + \begin{minipage}[t]{0.4\textwidth} + \centering + \vspace*{-18mm} + \pause + \begin{align*} + u &:= \sqrt{N} \\ + a &:= p = 0{,}03 \\ + b &:= 2{,}06 \cdot \sqrt{p(1-p)} \approx 0{,}351 \\ + c &:= -200 + \end{align*} + \begin{gather*} + \rightarrow \hspace*{5mm} au^2 + bu + c \le 0 \\ + \end{gather*} + \vspace*{-20mm} + \pause + \begin{align*} + \hspace{-17mm}\Rightarrow \hspace{3mm} u = \sqrt{N} \in \left[ -76, 87{,}7 \right] \\ + \end{align*} + \vspace*{-25mm} + \pause\begin{align*} + &\Rightarrow \hspace{3mm} N \le 5776 \hspace{5mm} \cap \hspace{5mm} N \le 7691{,}29 \\ + &\Rightarrow \hspace{3mm} N \le 5776 + \end{align*} + \end{minipage} \end{frame} \end{document}