Finish theory for part 1
This commit is contained in:
parent
c0992e9690
commit
aae0aae77b
@ -103,14 +103,6 @@
|
||||
\begin{gather*}
|
||||
F_X(x) = P(X \le x)
|
||||
\end{gather*}
|
||||
\pause\vspace{-10mm}
|
||||
\begin{gather*}
|
||||
\text{Eigenschaften:} \\[3mm]
|
||||
\lim_{x\rightarrow -\infty} F_X(x) = 0 \\
|
||||
\lim_{x\rightarrow +\infty} F_X(x) = 1 \\
|
||||
x_1 \le x_2 \Rightarrow F_X(x_1) \le F_X(x_2)\\
|
||||
\lim_{h\rightarrow 0^+} F_X(x + h) = F_X(x)
|
||||
\end{gather*}
|
||||
\end{itemize}
|
||||
\pause\column{\kitthreecolumns}
|
||||
\centering
|
||||
@ -119,50 +111,58 @@
|
||||
\begin{gather*}
|
||||
F_X(x) = \int_{-\infty}^{x} f_X(u) du
|
||||
\end{gather*}
|
||||
\pause\vspace{-10mm}
|
||||
\begin{gather*}
|
||||
\text{Eigenschaften:} \\[3mm]
|
||||
f_X(x) \ge 0 \\
|
||||
\int_{-\infty}^{\infty} f_X(x) dx = 1
|
||||
\end{gather*}
|
||||
\end{itemize}
|
||||
\end{columns}
|
||||
\begin{columns}[t]
|
||||
\pause \column{\kitthreecolumns}
|
||||
\centering
|
||||
\begin{gather*}
|
||||
\text{Eigenschaften:} \\[3mm]
|
||||
\lim_{x\rightarrow -\infty} F_X(x) = 0 \\
|
||||
\lim_{x\rightarrow +\infty} F_X(x) = 1 \\
|
||||
x_1 \le x_2 \Rightarrow F_X(x_1) \le F_X(x_2)\\
|
||||
F_X(x+) = \lim_{h\rightarrow 0^+} F_X (x+h) = F_X(x)
|
||||
\end{gather*}
|
||||
\pause \column{\kitthreecolumns}
|
||||
\centering
|
||||
\begin{gather*}
|
||||
\text{Eigenschaften:} \\[3mm]
|
||||
f_X(x) \ge 0 \\
|
||||
\int_{-\infty}^{\infty} f_X(x) dx = 1
|
||||
\end{gather*}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
% TODO: Write this
|
||||
% TODO: P(a < X < b) = F_X(b) - F_X(a)
|
||||
% TODO: E(X_cont) = int(...) vs E(X_disc) = sum(...)
|
||||
\begin{frame}
|
||||
\frametitle{Stetige Zufallsvariablen II}
|
||||
|
||||
\begin{columns}
|
||||
\column{\kitfourcolumns}
|
||||
\centering
|
||||
\begin{minipage}{0.6\textwidth}
|
||||
\begin{itemize}
|
||||
\item Kenngrößen
|
||||
\item Wichtige Kenngrößen
|
||||
\begin{align*}
|
||||
\begin{array}{rlr}
|
||||
\text{Erwartungswert: } \hspace{5mm} & E(X) =
|
||||
\displaystyle\int_{-\infty}^{\infty} x f_X(x) dx
|
||||
& \hspace{5mm} \big( = \mu \big) \\
|
||||
& \hspace{5mm} \big( = \mu \big) \\[3mm]
|
||||
\text{Varianz: } \hspace{5mm} & V(X) = E\mleft(
|
||||
\mleft( X - E(X) \mright)^2 \mright) \\
|
||||
\mleft( X - E(X) \mright)^2 \mright) \\[3mm]
|
||||
\text{Standardabweichung: } \hspace{5mm} &
|
||||
\sqrt{V(X)} & \hspace{5mm} \big( = \sigma \big)
|
||||
\end{array}
|
||||
\end{align*}
|
||||
\end{itemize}
|
||||
\column{\kittwocolumns}
|
||||
\centering
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.38\textwidth}
|
||||
\begin{lightgrayhighlightbox}
|
||||
Erinnerung
|
||||
\begin{align*}
|
||||
\text{\normalfont Erwartungswert: }& E(X) = \sum_{n=1}^{\infty} x_n P_X(x) \\
|
||||
\text{\normalfont Varianz: }& V(X) = E\mleft( \mleft( X - E(X) \mright)^2 \mright)
|
||||
\text{\normalfont Erwartungswert: }& E(X) =
|
||||
\sum_{n=1}^{\infty} x_n P_X(x) \\
|
||||
\text{\normalfont Varianz: }& V(X) = E\mleft( \mleft(
|
||||
X - E(X) \mright)^2 \mright)
|
||||
\end{align*}
|
||||
\end{lightgrayhighlightbox}
|
||||
\end{columns}
|
||||
|
||||
\end{minipage}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
@ -174,11 +174,12 @@
|
||||
\begin{greenblock}{Verteilungsfunktion (kontinuierlich)}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
F_X(x) = P(X \le x)\\[8mm]
|
||||
F_X(x) = P(X \le x)\\[4mm]
|
||||
P(a < X \le b) = F_X(b) - F_X(a) \\[8mm]
|
||||
\lim_{x\rightarrow -\infty} F_X(x) = 0 \\
|
||||
\lim_{x\rightarrow +\infty} F_X(x) = 1 \\
|
||||
x_1 \le x_2 \Rightarrow F_X(x_1) \le F_X(x_2)\\
|
||||
\lim_{h\rightarrow 0^+} F_X(x + h) = F_X(x)
|
||||
F_X(x+) = \lim_{h\rightarrow 0^+} F_X (x+h) = F_X(x)
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\column{\kitthreecolumns}
|
||||
@ -191,15 +192,6 @@
|
||||
\int_{-\infty}^{\infty} f_X(x) dx = 1
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
%TODO: Rename this
|
||||
\begin{greenblock}{TODO}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
P(a < X \le b) = F_X(b) - F_X(a) \\[2mm]
|
||||
E(X) = \int_{-\infty}^{x} u f_X(u) du
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
@ -339,7 +331,6 @@
|
||||
\begin{gather*}
|
||||
x_1 \le x_2 \Rightarrow F_X(x_1) \le F_X(x_2) \\
|
||||
F_X(x+) = \lim_{h\rightarrow 0^+} F_X (x+h) = F_X(x)
|
||||
\hspace{5mm}\forall x\in \mathbb{R}
|
||||
\end{gather*}
|
||||
\column{\kitonecolumn}
|
||||
\end{columns}
|
||||
@ -386,7 +377,7 @@
|
||||
= P(1 < X \le 2) = F_X(2) - F_X(1) = e^{-a} - e^{-4a}
|
||||
\end{gather*}
|
||||
\end{enumerate}
|
||||
% tex-fmt: off
|
||||
% tex-fmt: on
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
Loading…
Reference in New Issue
Block a user