Add basic presentation template

This commit is contained in:
Andreas Tsouchlos 2025-09-28 23:59:53 +02:00
parent 1ed8827b02
commit 93d8a72da6

View File

@ -41,6 +41,8 @@
\newcommand{\templates}{lib/cel-template}
\newbool{EnglishLanguage}
\input{\templates/packages.tex}
\input{\templates/modifications.tex}
\input{\templates/makros_own.tex}
@ -87,8 +89,161 @@
\maketitle
\end{frame}
% TODO: Replace slide content with relevant stuff
\begin{frame}
\frametitle{}
\frametitle{Relevante Theorie I}
\eqbox{
\begin{gather*}
f_X(x) := \frac{d}{dx} F_X(x) \\
P(X \le x) = F_X(x) = \int_{-\infty}^{x} f_X(t) dt \\
E(X) = \int_{-\infty}^{\infty} x\cdot f_X(x) dx
\end{gather*}
}
\begin{figure}
\centering
\begin{subfigure}[c]{0.5\textwidth}
\centering
\begin{gather*}
\text{Normalverteilung:} \hspace{8mm}
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}
e^{-\frac{(x - \mu)^2}{2\sigma^2}}
\end{gather*}
\end{subfigure}%
\begin{subfigure}[c]{0.4\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
domain=-4:4,
samples=100,
width=\textwidth,
height=0.5\textwidth,
ticks=none,
xlabel={$x$},
ylabel={$f_X(x)$}
]
\addplot+[mark=none, line width=1pt] {exp(-x^2)};
\end{axis}
\end{tikzpicture}
\end{subfigure}
\end{figure}
\end{frame}
% TODO: Replace slide content with relevant stuff
\begin{frame}
\frametitle{2022H - Aufgabe 4}
Für die Planung und Konstruktion von Windkraftanlagen ist eine
statistische Modellierung der
Windgeschwindigkeit essentiell. Die absolute Windgeschwindigkeit
kann als Weibull-verteilte
Zufallsvariable V mit den Parametern $\beta > 0$ und $\theta > 0$
modelliert werden. Die zugehörige
Verteilungsfunktion ist%
%
\begin{gather*}
F_V(v) = 1 - exp\left( -\left( \frac{v}{\theta} \right)^\beta
\right), \hspace{3mm} v \ge 0
\end{gather*}
%
\begin{enumerate}
\item Berechnen Sie die Wahrscheinlichkeitsdichte $f_V(v)$
der Weibullverteilung.
\item Eine Windkraftanlage speist Strom in das Stromnetz ein,
wenn die absolute Windgeschwindigkeit größer als $4
m/s$, jedoch kleiner als $25 m/s$ ist. Berechnen Sie die
Wahrscheinlichkeit dafür, dass eine Windkraftanlage Strom
einspeist, wenn die Windgeschwindigkeit Weibull-verteilt
mit $\beta = 2,0$ und $\theta = 6,0$ ist.
\item Eine Zufallsvariable W genüge einer Weibullverteilung
mit $\beta = 1$ und $\theta = 3$. Ermitteln Sie den
Erwartungsvert $E(W)$.
\item Warum ist die Weibullverteilung für die Modellierung
der absoluten Windgeschwindigkeit besser geeignet als
eine Normalverteilung?
\end{enumerate}
\end{frame}
% TODO: Replace slide content with relevant stuff
\begin{frame}
\frametitle{Relevante Theorie II}
\eqbox{
\begin{gather*}
f_X(x) := \frac{d}{dx} F_X(x) \\
P(X \le x) = F_X(x) = \int_{-\infty}^{x} f_X(t) dt \\
E(X) = \int_{-\infty}^{\infty} x\cdot f_X(x) dx
\end{gather*}
}
\begin{figure}
\centering
\begin{subfigure}[c]{0.5\textwidth}
\centering
\begin{gather*}
\text{Normalverteilung:} \hspace{8mm}
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}
e^{-\frac{(x - \mu)^2}{2\sigma^2}}
\end{gather*}
\end{subfigure}%
\begin{subfigure}[c]{0.4\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
domain=-4:4,
samples=100,
width=\textwidth,
height=0.5\textwidth,
ticks=none,
xlabel={$x$},
ylabel={$f_X(x)$}
]
\addplot+[mark=none, line width=1pt] {exp(-x^2)};
\end{axis}
\end{tikzpicture}
\end{subfigure}
\end{figure}
\end{frame}
% TODO: Replace slide content with relevant stuff
\begin{frame}
\frametitle{2022H - Aufgabe 4}
Für die Planung und Konstruktion von Windkraftanlagen ist eine
statistische Modellierung der
Windgeschwindigkeit essentiell. Die absolute Windgeschwindigkeit
kann als Weibull-verteilte
Zufallsvariable V mit den Parametern $\beta > 0$ und $\theta > 0$
modelliert werden. Die zugehörige
Verteilungsfunktion ist%
%
\begin{gather*}
F_V(v) = 1 - exp\left( -\left( \frac{v}{\theta} \right)^\beta
\right), \hspace{3mm} v \ge 0
\end{gather*}
%
\begin{enumerate}
\item Berechnen Sie die Wahrscheinlichkeitsdichte $f_V(v)$
der Weibullverteilung.
\item Eine Windkraftanlage speist Strom in das Stromnetz ein,
wenn die absolute Windgeschwindigkeit größer als $4
m/s$, jedoch kleiner als $25 m/s$ ist. Berechnen Sie die
Wahrscheinlichkeit dafür, dass eine Windkraftanlage Strom
einspeist, wenn die Windgeschwindigkeit Weibull-verteilt
mit $\beta = 2,0$ und $\theta = 6,0$ ist.
\item Eine Zufallsvariable W genüge einer Weibullverteilung
mit $\beta = 1$ und $\theta = 3$. Ermitteln Sie den
Erwartungsvert $E(W)$.
\item Warum ist die Weibullverteilung für die Modellierung
der absoluten Windgeschwindigkeit besser geeignet als
eine Normalverteilung?
\end{enumerate}
\end{frame}
\end{document}