Add summary slide for exercise 1

This commit is contained in:
Andreas Tsouchlos 2026-01-15 03:38:23 +01:00
parent 876bbad136
commit 8eb3a6378f

View File

@ -96,7 +96,42 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Theorie Wiederholung} \subsection{Theorie Wiederholung}
% TODO: \begin{frame}
\frametitle{Zusammenfassung}
\begin{columns}[t]
\column{\kitthreecolumns}
\begin{greenblock}{Poisson Verteilung}
\vspace*{-6mm}
\begin{gather*}
X \sim \text{Poisson}(\lambda) \\
P_X(k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!}
\end{gather*}
\end{greenblock}
\begin{greenblock}{Binomialentwicklung}
\vspace*{-6mm}
\begin{gather*}
\nsum_{k=0}^{n} \binom{n}{k}a^k b^{n-k} = (a+b)^n, \hspace{15mm}
\binom{n}{k} = \frac{n!}{(n-k!)k!}
\end{gather*}
\end{greenblock}
\column{\kitthreecolumns}
\begin{greenblock}{Faltungssatz}
\vspace*{-6mm}
\begin{gather*}
Z = X + Y \\
P_Z(n) = \nsum_{k=0}^{n} P_X(k)P_Y(n-k)
\end{gather*}
\end{greenblock}
\begin{greenblock}{Charakteristische Funktion einer Summe von ZVs}
\vspace*{-6mm}
\begin{gather*}
Z = X + Y \\
\phi_Z(s) = \phi_X(s) \cdot \phi_Y(s)
\end{gather*}
\end{greenblock}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Aufgabe} \subsection{Aufgabe}
@ -390,50 +425,50 @@
\begin{figure}[H] \begin{figure}[H]
\centering \centering
\begin{tikzpicture} % \begin{tikzpicture}
\begin{axis}[ % \begin{axis}[
view={20}{30}, % view={20}{30},
xlabel=$x$, ylabel=$y$, zlabel={$f_{X,Y}(x,y)$}, % xlabel=$x$, ylabel=$y$, zlabel={$f_{X,Y}(x,y)$},
xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=2, % xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=2,
xtick={0,0.5,1},ytick={0,0.5,1},ztick={0,1,2}, % xtick={0,0.5,1},ytick={0,0.5,1},ztick={0,1,2},
point meta min=0, point meta max=2, % point meta min=0, point meta max=2,
declare function={cutoff(\x) = 0.3/\x;}, % declare function={cutoff(\x) = 0.3/\x;},
legend, % legend,
] % ]
\addplot3[ % \addplot3[
surf, shader=interp, % surf, shader=interp,
samples=40, % samples=40,
domain=0:1, y domain=0:1 % domain=0:1, y domain=0:1
] ( % ] (
x, % x,
{y * min(1, cutoff(x))}, % {y * min(1, cutoff(x))},
{x + (y * min(1, cutoff(x)))} % {x + (y * min(1, cutoff(x)))}
); % );
\addlegendentry{$x\cdot y \le z$} % \addlegendentry{$x\cdot y \le z$}
%
\addplot3[ % \addplot3[
surf, shader=interp, % surf, shader=interp,
samples=40, % samples=40,
domain=0.3:1, y domain=0:1, % domain=0.3:1, y domain=0:1,
fill=gray, % fill=gray,
draw=none, % draw=none,
point meta=1.1, % point meta=1.1,
colormap name=cividis, % colormap name=cividis,
] ( % ] (
x, % x,
{cutoff(x) + y*(1 - cutoff(x))}, % {cutoff(x) + y*(1 - cutoff(x))},
{x + (cutoff(x) + y*(1 - cutoff(x)))} % {x + (cutoff(x) + y*(1 - cutoff(x)))}
); % );
%
\addplot3[ % \addplot3[
mesh, % mesh,
samples=15, % samples=15,
domain=0:1, y domain=0:1, % domain=0:1, y domain=0:1,
draw=black, % draw=black,
opacity=0.3 % opacity=0.3
] {x + y}; % ] {x + y};
\end{axis} % \end{axis}
\end{tikzpicture} % \end{tikzpicture}
\end{figure} \end{figure}
\end{minipage}% \end{minipage}%
\begin{minipage}{0.58\textwidth} \begin{minipage}{0.58\textwidth}