Finish solution for exercise 2a
This commit is contained in:
parent
23e14d74a8
commit
8dad61d27a
@ -249,7 +249,16 @@
|
|||||||
X = h_1(U,V) = U \\
|
X = h_1(U,V) = U \\
|
||||||
Y = h_2(U,V) = \frac{V}{U}
|
Y = h_2(U,V) = \frac{V}{U}
|
||||||
\end{array}
|
\end{array}
|
||||||
\right. \\[4mm]
|
\hspace{20mm}
|
||||||
|
\left(\begin{array}{l}
|
||||||
|
0 < x \le 1 \Rightarrow 0 < u \le 1 \\
|
||||||
|
0 < y \le 1 \Rightarrow 0 < v \le u \le 1
|
||||||
|
\end{array}
|
||||||
|
\right)
|
||||||
|
\right.
|
||||||
|
\end{gather*}
|
||||||
|
\vspace*{5mm}
|
||||||
|
\pause\begin{gather}
|
||||||
\mathcal{J} = \begin{pmatrix}
|
\mathcal{J} = \begin{pmatrix}
|
||||||
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\[2mm]
|
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\[2mm]
|
||||||
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
|
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
|
||||||
@ -258,32 +267,37 @@
|
|||||||
1 & 0 \\
|
1 & 0 \\
|
||||||
- \frac{v}{u^2} & \frac{1}{u}
|
- \frac{v}{u^2} & \frac{1}{u}
|
||||||
\end{pmatrix}
|
\end{pmatrix}
|
||||||
\end{gather*}
|
\end{gather}
|
||||||
\vspace{3mm}
|
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
f_{U,V}(u,v) = \lvert \text{det}(\mathcal{J}) \rvert \cdot f_{X,Y} \big(h_1(u,v),h_2(u,v)\big)
|
f_{U,V}(u,v) &= \lvert \text{det}(\mathcal{J}) \rvert
|
||||||
= \left\{ \begin{array}{ll}
|
\cdot f_{X,Y} \big(h_1(u,v),h_2(u,v)\big)
|
||||||
\frac{1}{u} \cdot \left(u + \frac{v}{u}\right) &,\hspace{2mm} 0 < v \le u \le 1 \\
|
= \frac{1}{u} \cdot \left(u + \frac{v}{u}\right)
|
||||||
0 &,\hspace{2mm} \text{sonst}
|
= 1 + \frac{v}{u^2}, && \hspace*{-20mm} 0 < v \le u \le 1 \\[3mm]
|
||||||
\end{array} \right.
|
|
||||||
= \left\{ \begin{array}{ll}
|
|
||||||
1 + \frac{v}{u^2} &,\hspace{2mm} 0 < v \le u \le 1 \\
|
|
||||||
0 &,\hspace{2mm} \text{sonst}
|
|
||||||
\end{array} \right.
|
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\vspace{3mm}
|
\vspace*{-22mm}
|
||||||
\begin{gather*}
|
\pause\begin{align*}
|
||||||
\text{Für } 0 < v \le 1: \hspace{5mm} f_V(v)
|
f_V(v) &= \int_{-\infty}^{\infty} f_{U,V}(u,v) du
|
||||||
= \int_{-\infty}^{\infty} f_{U,V}(u,v) du
|
= \int_{v}^{1} 1 + \frac{v}{u^2} du
|
||||||
= \int_{v}^{1} 1 + \frac{v}{u^2} dx
|
|
||||||
= \left[ u - \frac{v}{u} \right]_v^1
|
= \left[ u - \frac{v}{u} \right]_v^1
|
||||||
= 2(1-v) \\[3mm]
|
= 2(1-v), && \hspace*{-20mm} 0 < v \le 1
|
||||||
f_Z(z) = \left\{\begin{array}{ll}
|
\end{align*}
|
||||||
2(1-z) \hspace{3mm}&,\hspace{3mm} 0 < z \le 1 \\
|
\vspace{5mm}
|
||||||
0 \hspace{3mm}&,\hspace{3mm} \text{sonst}\\
|
\pause\begin{gather*}
|
||||||
\end{array}\right.
|
f_Z(z) = \left\{\begin{array}{ll}
|
||||||
|
2(1-z) \hspace{3mm}&,\hspace{3mm} 0 < z \le 1 \\
|
||||||
|
0 \hspace{3mm}&,\hspace{3mm} \text{sonst}\\
|
||||||
|
\end{array}\right.
|
||||||
\end{gather*}
|
\end{gather*}
|
||||||
\pause \item Verwenden Sie einen alternativen Ansatz zur Berechnung der
|
\end{enumerate}
|
||||||
|
% tex-fmt: on
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}
|
||||||
|
\frametitle{Aufgabe 2: Transformationssatz für 2D-Dichten}
|
||||||
|
|
||||||
|
\begin{enumerate}[a{)}]
|
||||||
|
\setcounter{enumi}{1}
|
||||||
|
\item Verwenden Sie einen alternativen Ansatz zur Berechnung der
|
||||||
Dichte. Hinweis: Beginnen Sie mit $P (Z \le z) = \ldots$
|
Dichte. Hinweis: Beginnen Sie mit $P (Z \le z) = \ldots$
|
||||||
\pause\begin{align*}
|
\pause\begin{align*}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
@ -291,7 +305,6 @@
|
|||||||
\pause\begin{align*}
|
\pause\begin{align*}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
% tex-fmt: on
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user