Add solution for 2b
This commit is contained in:
parent
587d894e5e
commit
876bbad136
@ -239,7 +239,8 @@
|
|||||||
\partial u}y & \frac{\displaystyle
|
\partial u}y & \frac{\displaystyle
|
||||||
\partial}{\displaystyle \partial v}y
|
\partial}{\displaystyle \partial v}y
|
||||||
\end{pmatrix}
|
\end{pmatrix}
|
||||||
= \begin{pmatrix}
|
=
|
||||||
|
\begin{pmatrix}
|
||||||
\frac{\displaystyle \partial}{\displaystyle
|
\frac{\displaystyle \partial}{\displaystyle
|
||||||
\partial u}h_1(u,v) & \frac{\displaystyle
|
\partial u}h_1(u,v) & \frac{\displaystyle
|
||||||
\partial}{\displaystyle \partial v}h_1(u,v) \\[2mm]
|
\partial}{\displaystyle \partial v}h_1(u,v) \\[2mm]
|
||||||
@ -357,20 +358,115 @@
|
|||||||
\begin{frame}
|
\begin{frame}
|
||||||
\frametitle{Aufgabe 2: Transformationssatz für 2D-Dichten}
|
\frametitle{Aufgabe 2: Transformationssatz für 2D-Dichten}
|
||||||
|
|
||||||
% tex-fmt: off
|
\begin{minipage}[c]{0.64\textwidth}
|
||||||
\begin{enumerate}[a{)}]
|
% tex-fmt: off
|
||||||
\setcounter{enumi}{1}
|
\begin{enumerate}[a{)}]
|
||||||
\item Verwenden Sie einen alternativen Ansatz zur Berechnung der
|
\setcounter{enumi}{1}
|
||||||
Dichte.\\
|
\item Verwenden Sie einen alternativen Ansatz zur Berechnung der
|
||||||
\textit{Hinweis}: Beginnen Sie mit $P (Z \le z) = \ldots$
|
Dichte.\\
|
||||||
\pause\begin{align*}
|
\textit{Hinweis}: Beginnen Sie mit $P (Z \le z) = \ldots$
|
||||||
P(Z \le z) = P(XZ \le z) &= \int_{-\infty}^{\infty}
|
\end{enumerate}
|
||||||
\int_{-\infty}^{z/x} f_{X,Y}(x,y) dy dx \\[1mm]
|
% tex-fmt: on
|
||||||
&= \int_{-\infty}^{\infty} \int_{-\infty}^{z}
|
\end{minipage}%
|
||||||
f_{X,Y}\left(x, \frac{u}{x}\right) \frac{1}{x} \; du dx
|
\begin{minipage}[c]{0.35\textwidth}
|
||||||
\end{align*}
|
\begin{lightgrayhighlightbox}
|
||||||
\end{enumerate}
|
\vspace*{-8mm}
|
||||||
% tex-fmt: on
|
% tex-fmt: off
|
||||||
|
\begin{gather*}
|
||||||
|
\text{Bekannt: } \hspace{10mm} f_{X,Y}(x,y) = x + y
|
||||||
|
\end{gather*}
|
||||||
|
% tex-fmt: on
|
||||||
|
\vspace*{-12mm}
|
||||||
|
\end{lightgrayhighlightbox}
|
||||||
|
\end{minipage}
|
||||||
|
|
||||||
|
\pause
|
||||||
|
\begin{align*}
|
||||||
|
P(Z \le z) = \int_{-\infty}^{z} f_Z(t) dt
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\begin{minipage}{0.4\textwidth}
|
||||||
|
\pause
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}[
|
||||||
|
view={20}{30},
|
||||||
|
xlabel=$x$, ylabel=$y$, zlabel={$f_{X,Y}(x,y)$},
|
||||||
|
xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=2,
|
||||||
|
xtick={0,0.5,1},ytick={0,0.5,1},ztick={0,1,2},
|
||||||
|
point meta min=0, point meta max=2,
|
||||||
|
declare function={cutoff(\x) = 0.3/\x;},
|
||||||
|
legend,
|
||||||
|
]
|
||||||
|
\addplot3[
|
||||||
|
surf, shader=interp,
|
||||||
|
samples=40,
|
||||||
|
domain=0:1, y domain=0:1
|
||||||
|
] (
|
||||||
|
x,
|
||||||
|
{y * min(1, cutoff(x))},
|
||||||
|
{x + (y * min(1, cutoff(x)))}
|
||||||
|
);
|
||||||
|
\addlegendentry{$x\cdot y \le z$}
|
||||||
|
|
||||||
|
\addplot3[
|
||||||
|
surf, shader=interp,
|
||||||
|
samples=40,
|
||||||
|
domain=0.3:1, y domain=0:1,
|
||||||
|
fill=gray,
|
||||||
|
draw=none,
|
||||||
|
point meta=1.1,
|
||||||
|
colormap name=cividis,
|
||||||
|
] (
|
||||||
|
x,
|
||||||
|
{cutoff(x) + y*(1 - cutoff(x))},
|
||||||
|
{x + (cutoff(x) + y*(1 - cutoff(x)))}
|
||||||
|
);
|
||||||
|
|
||||||
|
\addplot3[
|
||||||
|
mesh,
|
||||||
|
samples=15,
|
||||||
|
domain=0:1, y domain=0:1,
|
||||||
|
draw=black,
|
||||||
|
opacity=0.3
|
||||||
|
] {x + y};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}%
|
||||||
|
\begin{minipage}{0.58\textwidth}
|
||||||
|
\pause
|
||||||
|
\begin{align*}
|
||||||
|
P(Z \le z) &= P(XY \le z) = \int_{-\infty}^{\infty}
|
||||||
|
\int_{-\infty}^{z/x} f_{X,Y}(x,y) dy dx
|
||||||
|
\end{align*}
|
||||||
|
\vspace*{-10mm}
|
||||||
|
\pause
|
||||||
|
\begin{align*}
|
||||||
|
\overset{
|
||||||
|
\begin{subarray}{l}
|
||||||
|
u = xy \\
|
||||||
|
du = xdy
|
||||||
|
\end{subarray}}{=}
|
||||||
|
&\int_{-\infty}^{\infty} \int_{-\infty}^{z} f_{X,Y}(x,
|
||||||
|
\frac{u}{x})\frac{1}{x}\; du dx \\[2mm]
|
||||||
|
= &\int_{-\infty}^{z}
|
||||||
|
\underbrace{\int_{-\infty}^{\infty} f_{X,Y}(x,
|
||||||
|
\frac{u}{x})\frac{1}{x}\; dx}_{f_Z(u)}du \\
|
||||||
|
\end{align*}
|
||||||
|
\end{minipage}
|
||||||
|
|
||||||
|
\pause
|
||||||
|
\begin{gather*}
|
||||||
|
0 < y \le 1 \hspace{5mm} \Rightarrow\hspace{5mm} 0 <
|
||||||
|
\frac{u}{x} \le 1 \hspace{5mm}\Rightarrow\hspace{5mm} 0 <
|
||||||
|
u \le x \le 1 \\
|
||||||
|
f_Z(u) = \int_{-\infty}^{\infty} f_{X,Y}(x,
|
||||||
|
\frac{u}{x})\frac{1}{x}\; dx
|
||||||
|
= \int_{z}^{1} 1 + \frac{u}{x^2} dx = 2(1-u), \hspace{5mm} 0 < u \le 1
|
||||||
|
\end{gather*}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user