From 7e67ee3792b80bc136c844b4024a82a365ee0966 Mon Sep 17 00:00:00 2001 From: Andreas Tsouchlos Date: Sun, 21 Dec 2025 16:24:43 +0100 Subject: [PATCH] Add slides with exercises for tutorial 5 --- src/2026-01-16/presentation.tex | 138 ++++++++++++++++++++++++++++++++ 1 file changed, 138 insertions(+) create mode 100644 src/2026-01-16/presentation.tex diff --git a/src/2026-01-16/presentation.tex b/src/2026-01-16/presentation.tex new file mode 100644 index 0000000..ec338ed --- /dev/null +++ b/src/2026-01-16/presentation.tex @@ -0,0 +1,138 @@ +\ifdefined\ishandout +\documentclass[de, handout]{CELbeamer} +\else +\documentclass[de]{CELbeamer} +\fi + +% +% +% CEL Template +% +% + +\newcommand{\templates}{preambles} +\input{\templates/packages.tex} +\input{\templates/macros.tex} + +\grouplogo{CEL_logo.pdf} + +\groupname{Communication Engineering Lab (CEL)} +\groupnamewidth{80mm} + +\fundinglogos{} + +% +% +% Custom commands +% +% + +\input{lib/latex-common/common.tex} +\pgfplotsset{colorscheme/rocket} + +\newcommand{\res}{src/2026-01-16/res} + +% \tikzstyle{every node}=[font=\small] +% \captionsetup[sub]{font=small} + +% +% +% Document setup +% +% + +\usepackage{tikz} +\usepackage{tikz-3dplot} +\usetikzlibrary{spy, external, intersections, positioning} +%\tikzexternalize[prefix=build/] + +\usepackage{pgfplots} +\pgfplotsset{compat=newest} +\usepgfplotslibrary{fillbetween} + +\usepackage{enumerate} +\usepackage{listings} +\usepackage{subcaption} +\usepackage{bbm} +\usepackage{multirow} + +\usepackage{xcolor} + +\title{WT Tutorium 5} +\author[Tsouchlos]{Andreas Tsouchlos} +\date[]{16. Januar 2026} + +% +% +% Document body +% +% + +\begin{document} + +\begin{frame}[title white vertical, picture=images/IMG_7801-cut] + \titlepage +\end{frame} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\section{Aufgabe 1} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\subsection{Theorie Wiederholung} + +% TODO: + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\subsection{Aufgabe} + +\begin{frame} + \frametitle{Aufgabe 1:\\Faltungssatz \& Charakteristische Funktion} + + Es seien zwei unabhängige poissonverteilte Zufallsvariablen $X$ und + $Y$ mit den Parametern $\lambda_1$ + bzw. $\lambda_2$ gegeben. + + % tex-fmt: off + \begin{enumerate}[a{)}] + \item Zeigen Sie, dass die Summe $Z = X + Y$ ebenfalls + Poisson-verteilt ist mit dem Parameter $\lambda = \lambda_1 + + \lambda_2$. Nutzen Sie dazu den Faltungssatz für die Addition + zweier Zufallsvariablen. + \item Erbringen Sie denselben Nachweis mithilfe der + charakteristischen Funktion. + \end{enumerate} + % tex-fmt: on +\end{frame} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\section{Aufgabe 2} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\subsection{Theorie Wiederholung} + +% TODO: + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\subsection{Aufgabe} + +\begin{frame} + \frametitle{Aufgabe 2: Transformationssatz für 2D-Dichten} + + Die Zufallsvariable $(X; Y)^T$ habe die gemeinsame + Wahrscheinlichkeitsdichte $f (x, y) = x + y$ für + $x, y \in (0; 1]$ und null sonst. + + % tex-fmt: off + \begin{enumerate}[a{)}] + \item Berechnen Sie die Dichte von $(Z = X \cdot Y)$ mithilfe des + Transformationssatzes. + \item Verwenden Sie einen alternativen Ansatz zur Berechnung der + Dichte. Hinweis: Beginnen Sie mit $P (Z \le z) = \ldots$ + \item Berechnen Sie den Korrelationskoeffizienten $\rho_{XY}$ . + \end{enumerate} + % tex-fmt: on + +\end{frame} + +\end{document} +