Add formulas to summary slide of section 2
This commit is contained in:
parent
6eee07a720
commit
587d894e5e
@ -202,6 +202,67 @@
|
||||
|
||||
% TODO:
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Zusammenfassung}
|
||||
|
||||
\begin{columns}[t]
|
||||
\column{\kittwocolumns}
|
||||
\begin{greenblock}{Korrelationskoeffizient}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
\rho_{XY} = \frac{\text{cov}(X,Y)}{\sqrt{V(X)V(Y)}}
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\begin{greenblock}{Kovarianz}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
\text{cov}(X,Y) = E(X\cdot Y) - E(X)E(Y)
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\begin{greenblock}{Randdichte}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\column{\kitfourcolumns}
|
||||
\begin{greenblock}{Transformationssatz}
|
||||
\vspace*{-6mm}
|
||||
\begin{gather*}
|
||||
X = h_1(U,V), \hspace{5mm} Y = h_2(U,V) \\[2mm]
|
||||
\mathcal{J} =
|
||||
\begin{pmatrix}
|
||||
\frac{\displaystyle \partial}{\displaystyle
|
||||
\partial u}x & \frac{\displaystyle
|
||||
\partial}{\displaystyle \partial v}x \\[2mm]
|
||||
\frac{\displaystyle \partial}{\displaystyle
|
||||
\partial u}y & \frac{\displaystyle
|
||||
\partial}{\displaystyle \partial v}y
|
||||
\end{pmatrix}
|
||||
= \begin{pmatrix}
|
||||
\frac{\displaystyle \partial}{\displaystyle
|
||||
\partial u}h_1(u,v) & \frac{\displaystyle
|
||||
\partial}{\displaystyle \partial v}h_1(u,v) \\[2mm]
|
||||
\frac{\displaystyle \partial}{\displaystyle
|
||||
\partial u}h_2(u,v) & \frac{\displaystyle
|
||||
\partial}{\displaystyle \partial v}h_2(u,v)
|
||||
\end{pmatrix} \\[3mm]
|
||||
f_{U,V}(u,v) = \lvert
|
||||
\text{det}(\mathcal{J}) \rvert
|
||||
\cdot f_{X,Y} \big(h_1(u,v),h_2(u,v)\big)
|
||||
\end{gather*}
|
||||
\end{greenblock}
|
||||
\begin{greenblock}{Erwartungswert \& Varianz}
|
||||
\vspace*{-6mm}
|
||||
\begin{align*}
|
||||
V(X) &= E\big( (X - E(X))^2 \big) = E(X^2) - E^2(X) \\
|
||||
E(X) &= \int_{-\infty}^{\infty} x f_X(x) dx \\
|
||||
E(g(X)) &= \int_{-\infty}^{\infty} g(x) f_X(x) dx
|
||||
\end{align*}
|
||||
\end{greenblock}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Aufgabe}
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user